Adipose-Derived Stromal Cells: Isolation, Expansion, and Differentiation

  • Protocol
  • First Online:
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2598))

Abstract

Adipose-derived stromal cells (ASC) are a promising alternative cell source to chondrocytes as well as to bone marrow-derived mesenchymal stromal cells (BMSC) in cartilage tissue engineering and repair. Here we describe ASC isolation from liposuction by-products by collagenase-based tissue digestion combined with cell filtration and followed by monolayer attachment and expansion culture. Quality control requires confirmation of correct surface marker expression and multilineage differentiation potential by a trilineage differentiation assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boeuf S, Richter W (2010) Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res Ther 1(4):31. https://doi.org/10.1186/scrt31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruetze M, Richter W (2014) Adipose-derived stromal cells for osteoarticular repair: trophic function versus stem cell activity. Expert Rev Mol Med 16:e9. https://doi.org/10.1017/erm.2014.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Estes BT, Diekman BO, Gimble JM et al (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5(7):1294–1311. https://doi.org/10.1038/nprot.2010.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  5. Winter A, Breit S, Parsch D et al (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48(2):418–429. https://doi.org/10.1002/art.10767

    Article  CAS  PubMed  Google Scholar 

  6. Dmitrieva RI, Minullina IR, Bilibina AA et al (2012) Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell Cycle 11(2):377–383. https://doi.org/10.4161/cc.11.2.18858

    Article  CAS  PubMed  Google Scholar 

  7. Van RL, Bayliss CE, Roncari DA (1976) Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest 58(3):699–704. https://doi.org/10.1172/JCI108516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitchell JB, McIntosh K, Zvonic S et al (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24(2):376–385. https://doi.org/10.1634/stemcells.2005-0234

    Article  PubMed  Google Scholar 

  9. Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648. https://doi.org/10.1016/j.jcyt.2013.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brocher J, Janicki P, Voltz P et al (2013) Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Res 11(3):1393–1406. https://doi.org/10.1016/j.scr.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  11. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M et al (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8(2):166–177. https://doi.org/10.1080/14653240600621125

    Article  CAS  PubMed  Google Scholar 

  12. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  13. Dexheimer V, Frank S, Richter W (2012) Proliferation as a requirement for in vitro chondrogenesis of human mesenchymal stem cells. Stem Cells Dev 21(12):2160–2169. https://doi.org/10.1089/scd.2011.0670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bothe F, Lotz B, Seebach E et al (2018) Stimulation of calvarial bone healing with human bone marrow stromal cells versus inhibition with adipose-tissue stromal cells on nanostructured beta-TCP-collagen. Acta Biomater 76:135–145. https://doi.org/10.1016/j.actbio.2018.06.026

    Article  CAS  PubMed  Google Scholar 

  15. Shafiee A, Seyedjafari E, Soleimani M et al (2011) A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol Lett 33(6):1257–1264. https://doi.org/10.1007/s10529-011-0541-8

    Article  CAS  PubMed  Google Scholar 

  16. Hennig T, Lorenz H, Thiel A et al (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 211(3):682–691. https://doi.org/10.1002/jcp.20977

    Article  CAS  PubMed  Google Scholar 

  17. Hildner F, Peterbauer A, Wolbank S et al (2010) FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-beta in human adipose derived stem cells. J Biomed Mater Res A 94(3):978–987. https://doi.org/10.1002/jbm.a.32761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiltrud Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buchert, J.M., Lotz, B., Diederichs, S., Richter, W. (2023). Adipose-Derived Stromal Cells: Isolation, Expansion, and Differentiation. In: Stoddart, M.J., Della Bella, E., Armiento, A.R. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 2598. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2839-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2839-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2838-6

  • Online ISBN: 978-1-0716-2839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation