Protocol for CRISPR/Cas Genome Editing for Investigating Cell Communication Network

  • Protocol
  • First Online:
CCN Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2582))

Abstract

The Cellular Communication Network Factor (CCN) family is composed of six members: CCN1/CYR61, CCN2/CTGF, CCN3/NOV, CCN4/WISP1, CCN5/WISP2, and CCN6/WISP3. The second member, CCN2/CTGF is a matricellular protein that promotes extracellular matrix (ECM) synthesis and controls angiogenesis. On the other hand, moonlighting/matrix metalloproteinase 3 (MMP3) is an ECM-degrading enzyme that also functions as an intracellular transcription factor. Importantly, extracellular MMP3 is uptaken into cells, translocating into nuclei, and transcriptionally activating CCN2/CTGF gene in cancer and chondrocytes. Thus, the MMP3-CTGF axis balances the matrix metabolism and turnover in the tissue and tumor microenvironments. We established an MMP3 knockout cell line using the CRISPR/Cas9 system, demonstrating the sequential regulatory events of the MMP3-CCN2 axis in the microenvironment. Notably, our protocol is useful for generation of CCN knockout cells as well. Here we serve a protocol of the CRISPR/Cas9-based gene targeting in cultured cells for investigating cellular communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kubota S, Takigawa M (2015) Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 128(3):181–196. https://doi.org/10.1042/CS20140264

    Article  CAS  Google Scholar 

  2. Eguchi T, Taha EA (2021) Extracellular vesicle-associated moonlighting proteins: heat shock proteins and Metalloproteinases. In: Asea AAA, Kaur P (eds) Heat shock proteins, vol 22. Springer Nature, Cham, pp 1–18. https://doi.org/10.1007/7515_2020_25

    Chapter  Google Scholar 

  3. Okusha Y, Eguchi T, Tran MT, Sogawa C, Yoshida K, Itagaki M, Taha EA, Ono K, Aoyama E, Okamura H, Kozaki KI, Calderwood SK, Takigawa M, Okamoto K (2020) Extracellular vesicles enriched with moonlighting metalloproteinase are highly transmissive, pro-tumorigenic, and trans-activates cellular communication network factor (CCN2/CTGF): CRISPR against cancer. Cancers (Basel) 12(4). https://doi.org/10.3390/cancers12040881

  4. Okusha Y, Eguchi T, Sogawa C, Okui T, Nakano K, Okamoto K, Kozaki K (2018) The intranuclear PEX domain of MMP involves proliferation, migration, and metastasis of aggressive adenocarcinoma cells. J Cell Biochem 119(9):7363–7376. https://doi.org/10.1002/jcb.27040

    Article  CAS  PubMed  Google Scholar 

  5. Eguchi T, Kubota S, Takigawa M (2017) Promoter analyses of CCN genes. In: Takigawa M (ed) CCN proteins: methods and protocols. Methods in molecular biology, vol 1489, 2016/10/14 edn. Humana Press, New York, pp 177–185. https://doi.org/10.1007/978-1-4939-6430-7_18

    Chapter  Google Scholar 

  6. Eguchi T, Kubota S, Kawata K, Mukudai Y, Uehara J, Ohgawara T, Ibaragi S, Sasaki A, Kuboki T, Takigawa M (2010) Novel transcriptional regulation of CCN2/CTGF by nuclear translocation of MMP3. In: Perbal A, Takigawa M, Perbal B (eds) CCN proteins in health and disease. Springer, Netherlands, pp 255–264. https://doi.org/10.1007/978-90-481-3779-4_19

    Chapter  Google Scholar 

  7. Eguchi T, Kubota S, Kawata K, Mukudai Y, Uehara J, Ohgawara T, Ibaragi S, Sasaki A, Kuboki T, Takigawa M (2008) Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol Cell Biol 28(7):2391–2413. https://doi.org/10.1128/MCB.01288-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eguchi T, Calderwood SK, Takigawa M, Kubota S, Kozaki K (2017) Intracellular MMP3 promotes HSP gene expression in collaboration with Chromobox proteins. J Cell Biochem 118(1):43–51. https://doi.org/10.1002/jcb.25607

    Article  CAS  PubMed  Google Scholar 

  9. Eguchi T, Sheta M, Fujii M, Calderwood SK (2022) Cancer extracellular vesicles, tumoroid models, and tumor microenvironment. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2022.01.003

  10. Taha EA, Sogawa C, Okusha Y, Kawai H, Oo MW, Elseoudi A, Lu Y, Nagatsuka H, Kubota S, Satoh A, Okamoto K, Eguchi T (2020) Knockout of MMP3 weakens solid tumor organoids and cancer extracellular vesicles. Cancers (Basel) 12(5). https://doi.org/10.3390/cancers12051260

  11. Eguchi T, Okusha Y, Lu Y, Ono K, Taha EA, Fukuoka S (2017) Comprehensive method for exosome isolation and proteome analysis for detection of CCN factors in/on exosomes. In: Takigawa M (ed) CCN proteins methods and protocols, 2nd edn. Humana Press, New York

    Google Scholar 

  12. Ono K, Okusha Y, Tran MT, Umemori K, Eguchi T (2017) Western blot protocol for analysis of CCN proteins and fragments in exosomes, vesicle-free fractions, and cells. In: Takigawa M (ed) CCN proteins methods and protocols, 2nd edn. Humana Press, New York

    Google Scholar 

  13. Eguchi T, Kubota S, Kawata K, Mukudai Y, Ohgawara T, Miyazono K, Nakao K, Kondo S, Takigawa M (2007) Different transcriptional strategies for ccn2/ctgf gene induction between human chondrocytic and breast cancer cell lines. Biochimie 89(3):278–288. https://doi.org/10.1016/j.biochi.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  14. Shimo T, Kubota S, Yoshioka N, Ibaragi S, Isowa S, Eguchi T, Sasaki A, Takigawa M (2006) Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J Bone Miner Res 21(7):1045–1059. https://doi.org/10.1359/jbmr.060416

    Article  CAS  PubMed  Google Scholar 

  15. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, Sugahara T, Takigawa M (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23(5):769–776. https://doi.org/10.1093/carcin/23.5.769

    Article  CAS  PubMed  Google Scholar 

  16. Eguchi T, Kubota S, Kondo S, Kuboki T, Yatani H, Takigawa M (2002) A novel cis-element that enhances connective tissue growth factor gene expression in chondrocytic cells. Biochem Biophys Res Commun 295(2):445–451

    Article  CAS  PubMed  Google Scholar 

  17. Eguchi T, Kubota S, Kondo S, Shimo T, Hattori T, Nakanishi T, Kuboki T, Yatani H, Takigawa M (2001) Regulatory mechanism of human connective tissue growth factor (CTGF/Hcs24) gene expression in a human chondrocytic cell line, HCS-2/8. J Biochem 130(1):79–87

    Article  CAS  PubMed  Google Scholar 

  18. Eguchi T, Lu Y, Taha EA, Okusha Y (2017) Transfection, spinfection, exofection, and Luciferase assays for analysis of CCN genes expression mechanism. In: Takigawa M (ed) CCN proteins methods and protocols, 2nd edn. Humana Press, New York

    Google Scholar 

  19. Eguchi T, Prince TL, Tran MT, Sogawa C, Lang BJ, Calderwood SK (2019) MZF1 and SCAND1 reciprocally regulate CDC37 gene expression in prostate cancer. Cancers (Basel) 11(6):1–15. https://doi.org/10.3390/cancers11060792

    Article  CAS  Google Scholar 

  20. Namba Y, Sogawa C, Okusha Y, Kawai H, Itagaki M, Ono K, Murakami J, Aoyama E, Ohyama K, Asaumi J, Takigawa M, Okamoto K, Calderwood SK, Kozaki K, Eguchi T (2018) Depletion of lipid efflux pump ABCG1 triggers the intracellular accumulation of extracellular vesicles and reduces aggregation and tumorigenesis of metastatic cancer cells. Front Oncol 8(376):1–16. https://doi.org/10.3389/fonc.2018.00376

    Article  Google Scholar 

Download references

Acknowledgments

T.E was supported by JSPS Kakenhi, grant numbers 17K11642-TE, 20K09904-CS, 19H03817-MT, 20H03888-HN, 20K20611-MT, 20H03888-HN, 21H03119-TY, and 21K08902-HY. Y.O was supported by JSPS overseas research fellowship. The authors thank Eriko Aoyama, Satoshi Kubota, Kuniaki Okamoto, Chiharu Sogawa, Eman Taha, Masaharu Takigawa, and Manh Tien Tran for useful information, discussion, materials, or experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Eguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okusha, Y., Eguchi, T. (2023). Protocol for CRISPR/Cas Genome Editing for Investigating Cell Communication Network. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 2582. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2744-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2744-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2743-3

  • Online ISBN: 978-1-0716-2744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation