CCN Proteins (Cellular Communication Network Factors): Expanding Their Repertoire Toward a New Concept

  • Protocol
  • First Online:
CCN Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2582))

Abstract

I herein report the general structures and functions of CCN proteins and possible molecular mechanisms involved in the unique biological actions of this family of intercellular signaling regulators, which are considered matricellular proteins and were once referred to as “signal conductors” but have recently been renamed “Cellular Communication Network Factors.” Their repertoire of functions beyond their role as matricellular proteins is also described to aid in future studies. Advanced research concerning their relevance to pathology is briefly introduced as well. The information provided in this chapter is expected to be useful for readers of subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 111.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perbal B, Takigawa M (2005) CCN proteins: a new family of cell growth and differentiation regulators. Imperial College Press, London, pp 1–311

    Book  Google Scholar 

  2. Takigawa M, Nakanishi T, Kubota S, Nishida T (2003) The role of CTGF/Hcs24/ecogenin in skeletal growth control. J Cell Physiol 194:256–266

    Article  CAS  PubMed  Google Scholar 

  3. Takigawa M (2003) CTGF/Hcs 24 as a multifunctional growth factor for fibroblasts, chondrocytes, and vascular endothelial cells. Drug News Perspect 16:11–21

    Article  CAS  PubMed  Google Scholar 

  4. Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrinol 178:169–175

    Article  CAS  PubMed  Google Scholar 

  5. Brigstock DR (2003) Goldshemeding R, Katsube KI, Lam SC, Lau LF, Lyons K, Naus C, Perbal B, Riser B, Takigawa M and Yeger H Proposal for a unified CCN nomenclature. Mol Pathol 56:127–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perbal B, Tweedie S, Bruford E (2018) The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1-6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1-3 respectively. J Cell Commun Signal 12:625–629

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kubota S, Takigawa M (2007) Role of CCN2/CTGF/Hcs24 in bone growth. Int Rev Cytol 257:1–41

    Article  CAS  PubMed  Google Scholar 

  8. Kubota S, Takigawa M (2011) The role of CCN2 in cartilage and bone development. J Cell Commun Signal 5:209–217

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kubota S, Takigawa M (2013) The CCN family acting throughout the body: recent research developments. Biomol Concepts 5:477–494

    Article  Google Scholar 

  10. Takigawa M (2013) CCN2: a master regulator of the genesis of bone and cartilage. J Cell Commun Signal 7:191–201

    Article  PubMed  PubMed Central  Google Scholar 

  11. Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    Article  CAS  PubMed  Google Scholar 

  12. Kubota S, Takigawa M (2007) CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 10:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kubota S, Takigawa M (2015) Cellular and molecular actions of CCN2/CTGF and their role under physiological and pathological conditions. Clin Sci 128:181–196

    Article  CAS  Google Scholar 

  15. Takigawa M (2018) An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J Cell Commun Signal 12:253–264

    Article  PubMed  Google Scholar 

  16. Giusti V, Scotlandi K (2021) CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 15:545–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R (2021) CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 15:25–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takigawa M (2017) The CCN proteins: an overview. Methods Mol Biol 1489:1–8

    Article  CAS  PubMed  Google Scholar 

  19. Gao R, Brigstock DR (2004) Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 279(10):8848–8855

    Article  CAS  PubMed  Google Scholar 

  20. Hoshijima M, Hattori T, Inoue M, Araki D, Hanagata H, Miyauchi A, Takigawa M (2006) CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin alpha5beta1. FEBS Lett 580(5):1376–1382

    Article  CAS  PubMed  Google Scholar 

  21. Ohkawara B, Kobayakawa A, Kanbara S, Hattori T, Kubota S, Ito M, Masuda A, Takigawa M, Lyons KM, Ishiguro N, Ohno K (2020) CTGF/CCN2 facilitates LRP4-mediated formation of the embryonic neuromuscular junction. EMBO Rep 21:e48462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vincourt JB, Vibnaud JM, Lionnection F, Sirveaux F, Kawaki H, Marchal S, Lomazzi S, Plenat F, Netter P, Takigawa M, Mainard D, Magdalou J (2008). Increased expression of matrilin-3 not only in osteoarthritic articular cartilage but also in cartilage-forming tumors, and down-regulation of SOX9 via epidermal growth factor domain 1-dependent signaling. Arthritis Rheum 58: 2798–2808

    Google Scholar 

  23. Ohta K, Aoyama E, Ahmad SAI, Ito N, Anam MB, Kubota S, Takigawa M (2019) CCN2/CTGF binds the small leucine rich proteoglycan protein Tsukushi. J Cell Commun Signal 13:113–118

    Google Scholar 

  24. Grotendorst GR, Duncan MR (2005) Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J 19(7):729–738

    Article  CAS  PubMed  Google Scholar 

  25. Hoshijima M, Hattori T, Aoyama E, Nishida T, Yamashiro T, Takigawa M (2012) Roles of heterotypic CCN2/CTGF-CCN3/NOV and homotypic CCN2-CCN2 interactions in expression of the differentiated phenotype of chondrocytes. FEBS J 279(19):3584–3597

    Article  CAS  PubMed  Google Scholar 

  26. Takigawa M (2015) Terminology ofCCN1-6 should not be applicable for their fragments and be limited to only full length CCN1-6. J Cell Commun Signal 9(1):81–83

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abd El Kader T, Kubota S, Nishida T, Hattori T, Aoyama E, Janune D, Hara ES, Ono M, Tabata Y, Kuboki T, Takigawa M (2014) The regenerative effects of CCN2 independent modules on chondrocytes in vitro and osteoarthritis models in vivo. Bone 59:180–188

    Article  CAS  PubMed  Google Scholar 

  28. Aoyama E, Kubota S, Khattab HM, Nishida T, Takigawa M (2015) CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG. Bone 73:242–248

    Article  CAS  PubMed  Google Scholar 

  29. Khattab HM, Aoyama E, Kubota S, Takigawa M (2015) Physical interaction of CCN2 with diverse growth factors involved in chondrocyte differentiation during endochondral ossification. J Cell Commun Signal 9(3):247–254

    Article  PubMed  PubMed Central  Google Scholar 

  30. Takigawa M (ed) CCN proteins: methods and protocols. Methods in molecular biology, vol 1489. Springer, New York, pp 1–576

    Google Scholar 

  31. Yeger H, Perbal B (2021) The CCN axis in cancer development and progression. J Cell Commun Signal 15:491–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoshijima M, Hattori T, Aoyama E, Nishida T, Kubota S, Kamioka H, Takigawa M (2020) Roles of Interaction between CCN2 and Rab14 in Aggrecan Production by Chondrocytes. Int J Mol Sci 21(8):2769

    Article  CAS  PubMed Central  Google Scholar 

  33. Yosimichi G, Kubota S, Hattori T, Nishida T, Nawachi K, Nakanishi T, Kamada M, Takano-Yamamoto, Takigawa M (2002) CTGF/Hcs24 interacts with the cytoskeletal protein actin in chondrocytes. Biochem Biophys Res Commun 299:755–761

    Article  CAS  PubMed  Google Scholar 

  34. Perbal B (2018) The concept of the CCN protein family revisited: a centralized coordination network. J Cell Commun Signal 12:3–12

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patra M, Mahata SK, Padhan DK, Sen M (2016) CCN6 regulates mitochondrial function. J Cell Sci 129:2841–2851

    CAS  PubMed  Google Scholar 

  36. Padhan DK, Sengupta A, Patra M, Ganguly A, Mahata SK, Sen M (2020) CCN6 regulates mitochondrial respiratory complex assembly and activity. FASEB J 34:12163–12176

    Article  CAS  PubMed  Google Scholar 

  37. Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M, Brigstock DR (2014) Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery 156:548–555

    Article  PubMed  Google Scholar 

  38. Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M, Brigstock DR (2014) Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes. J Cell Commun Signal 8:147–156

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fernandez-Ruiz R, García-Alamán A, Esteban Y, Mir-Coll J, Serra-Navarro B, Fontcuberta-PiSunyer M, Broca C, Armanet M, Wojtusciszyn A, Kram V, Young MF, Vidal J, Gomis R, Gasa R (2020) Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 11:5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jun JI, Lau LF (2020) CCN1 is an opsonin for bacterial clearance and a direct activator of Toll-like receptor signaling. Nat Commun 11:1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the programs JSPS KAKENHI Grants-in-aid for Scientific Research (B) No. #JP19H03817 and Challenging Research (Pioneering) #JP20K20611 from the Japan Society for the Promotion of Sciences, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Takigawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takigawa, M. (2023). CCN Proteins (Cellular Communication Network Factors): Expanding Their Repertoire Toward a New Concept. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 2582. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2744-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2744-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2743-3

  • Online ISBN: 978-1-0716-2744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation