Visualizing the Interactions Sha** the Imaging of the Microenvironment in Human Cancers

  • Protocol
  • First Online:
Tumor Angiogenesis Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2572))

Abstract

The Visium Spatial Gene Expression Solution (Visium 10×) allows for the mRNA analysis using high throughput sequencing and maps a transcriptional expression pattern in tissue sections using high-resolution microscope imaging in ex-vivo human and mice samples. The workflow surveys spatial global gene expression in tissue sections, exploiting the whole transcriptome profiling and defining the set of transcripts via targeted gene panels. An automated cell type annotation allows a comparison with control tissue samples. This technique delineates cancerous or diseased tissue boundaries and details gene expression gradients in the tissue surrounding the tumor or pathologic nests. Remarkably, the Visium 10× allows for whole transcriptome and targeted analysis without the loss of spatial information. This approach provides gene expression data within the context of tissue architecture, tissue microenvironments, and cell groups. It can be used in association with therapy, anti-angiogenic therapy, and immunotherapy to improve treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baghban R, Roshangar L, Jahanban-Esfahlan R et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18:59. https://doi.org/10.1186/s12964-020-0530-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marquardt A, Solimando AG, Kerscher A et al (2021) Subgroup-independent map** of renal cell carcinoma-machine learning reveals prognostic mitochondrial gene signature beyond histopathologic boundaries. Front Oncol 11:621278. https://doi.org/10.3389/fonc.2021.621278

    Article  PubMed  PubMed Central  Google Scholar 

  3. Solimando AG, Da Vià MC, Leone P et al (2021) Halting the vicious cycle within the multiple myeloma ecosystem: blocking JAM-A on bone marrow endothelial cells restores Angiogenic homeostasis and suppresses tumor progression. Haematologica 106:1943–1956. https://doi.org/10.3324/haematol.2019.239913

    Article  CAS  PubMed  Google Scholar 

  4. Solimando AG, Summa SD, Vacca A et al (2020) Cancer-associated angiogenesis: the endothelial cell as a checkpoint for immunological patrolling. Cancers (Basel) 12:E3380. https://doi.org/10.3390/cancers12113380

    Article  CAS  Google Scholar 

  5. Da Vià MC, Solimando AG, Garitano-Trojaola A et al (2020) CIC mutation as a molecular mechanism of acquired resistance to combined BRAF-MEK inhibition in extramedullary multiple myeloma with central nervous system involvement. Oncologist 25:112–118. https://doi.org/10.1634/theoncologist.2019-0356

    Article  CAS  PubMed  Google Scholar 

  6. Solimando AG, Da Vià MC, Cicco S et al (2019) High-risk multiple myeloma: integrated clinical and omics approach dissects the neoplastic clone and the tumor microenvironment. J Clin Med 8:997. https://doi.org/10.3390/jcm8070997

    Article  CAS  PubMed Central  Google Scholar 

  7. Georganaki M, van Hooren L, Dimberg A (2018) Vascular targeting to increase the efficiency of immune checkpoint blockade in cancer. Front Immunol 9:3081. https://doi.org/10.3389/fimmu.2018.03081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dimopoulos MA, Moreau P, Terpos E et al (2022) Corrigendum to “multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up”: [Ann Oncol 2021; 32(3): 309–322]. Ann Oncol 33:117. https://doi.org/10.1016/j.annonc.2021.10.001

    Article  CAS  PubMed  Google Scholar 

  9. Bolli N, Avet-Loiseau H, Wedge DC et al (2014) Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5:2997. https://doi.org/10.1038/ncomms3997

    Article  CAS  PubMed  Google Scholar 

  10. Palumbo A, Avet-Loiseau H, Oliva S et al (2015) Revised international staging system for multiple myeloma: a report from international myeloma working group. J Clin Oncol 33:2863–2869. https://doi.org/10.1200/JCO.2015.61.2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berglund E, Maaskola J, Schultz N et al (2018) Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat Commun 9:2419. https://doi.org/10.1038/s41467-018-04724-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krebs M, Solimando AG, Kalogirou C et al (2020) MiR-221-3p regulates VEGFR2 expression in high-risk prostate cancer and represents an escape mechanism from sunitinib in vitro. J Clin Med 9:E670. https://doi.org/10.3390/jcm9030670

    Article  CAS  PubMed  Google Scholar 

  13. Lv J, Shi Q, Han Y et al (2021) Spatial transcriptomics reveals gene expression characteristics in invasive micropapillary carcinoma of the breast. Cell Death Dis 12:1095. https://doi.org/10.1038/s41419-021-04380-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shadbad MA, Safaei S, Brunetti O et al (2021) A systematic review on the therapeutic potentiality of PD-L1-inhibiting MicroRNAs for triple-negative breast cancer: toward single-cell sequencing-guided biomimetic delivery. Genes (Basel) 12:1206. https://doi.org/10.3390/genes12081206

    Article  CAS  Google Scholar 

  15. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656. https://doi.org/10.1038/s41576-019-0150-2

    Article  CAS  PubMed  Google Scholar 

  16. Ståhl PL, Salmén F, Vickovic S et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82. https://doi.org/10.1126/science.aaf2403

    Article  CAS  PubMed  Google Scholar 

  17. Liyanage S, Dassanayake RS, Bouyanfif A et al (2017) Optimization and validation of cryostat temperature conditions for trans-reflectance mode FTIR microspectroscopic imaging of biological tissues. MethodsX 4:118–127. https://doi.org/10.1016/j.mex.2017.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  18. Joglekar A, Prjibelski A, Mahfouz A et al (2021) A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat Commun 12:463. https://doi.org/10.1038/s41467-020-20343-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao L, Giannico D, Leone P et al (2020) HB-EGF-EGFR signaling in bone marrow endothelial cells mediates angiogenesis associated with multiple myeloma. Cancers (Basel) 12:E173. https://doi.org/10.3390/cancers12010173

    Article  CAS  Google Scholar 

  20. Misra A, Baker CD, Pritchett EM et al (2021) Characterizing neonatal heart maturation, regeneration, and scar resolution using spatial transcriptomics. J Cardiovasc Dev Dis 9:1. https://doi.org/10.3390/jcdd9010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brandl A, Solimando A, Mokhtari Z et al (2021) Junctional adhesion molecule-C expression specifies a CD138low/Neg multiple myeloma cell population in mice and humans. Blood Adv. https://doi.org/10.1182/bloodadvances.2021004354

  22. Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-Seq data using regularized negative binomial regression. Genome Biol 20:296. https://doi.org/10.1186/s13059-019-1874-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicole M, Anderson M. Celeste, Simon (2020) The tumor microenvironment. Current Biology 30(16):R921–R925 S0960982220309337 https://doi.org/10.1016/j.cub.2020.06.081

  24. Mark, Spaw Shrikant, Anant Sufi Mary, Thomas (2017) Stromal contributions to the carcinogenic process. Molecular Carcinogenesis 56(4):1199–1213. https://doi.org/10.1002/mc.22583

  25. Gnoni, Antonio Brunetti, Oronzo Longo, Vito Calabrese, Angela Argentiero, Antonel-la Calbi, Roberto Solimando Antonio, Giovanni Licchetta, Antonella (2020) Immune system and bone microenvironment: rationale for targeted cancer therapies. Oncotarget 11(4):480–487. https://doi.org/10.18632/oncotarget.27439

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. Solimando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Solimando, A.G., Desantis, V., Da Vià, M.C. (2023). Visualizing the Interactions Sha** the Imaging of the Microenvironment in Human Cancers. In: Ribatti, D. (eds) Tumor Angiogenesis Assays. Methods in Molecular Biology, vol 2572. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2703-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2703-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2702-0

  • Online ISBN: 978-1-0716-2703-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation