A Label Retaining System to Capture Slow-Cycling Cancer Cells

  • Protocol
  • First Online:
Cancer Drug Resistance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2535))

Abstract

Dormant or slow-cycling tumor cells can form a residual chemoresistant reservoir responsible for relapse in patients, years after curative surgery and adjuvant therapy. Slow-cycling cancer cells (SCCC) represent a cellular status rather than a cell population present in a minor proportion, even in growing tumors. We have adapted the pulse-chase expression of histone H2B fused to enhanced GFP (H2BeGFP) for labelling and isolating SCCC. SCCC show cancer-initiation potential and enhanced chemoresistance, and present a distinctive nongenetic and cell-autonomous gene expression profile shared across different tumor types. The use of our H2BeGFP pulse-chase method opens the possibility to study live SCCC in any growing tissue either cancerous or normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107

  2. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot BM, Morris JS, Simon IM, Gerster S, Fessler E, De Sousa EMF, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam GC, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray JW, Hanahan D, Tabernero J, Bernards R, Friend SH, Laurent-Puig P, Medema JP, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356. https://doi.org/10.1038/nm.3967

  3. Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O, Abel U, Arens A, Weichert W, Brand K, Koch M, Weitz J, Schmidt M, von Kalle C, Glimm H (2011) Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9(4):357–365. https://doi.org/10.1016/j.stem.2011.08.010

  4. Shen S, Vagner S, Robert C (2020) Persistent cancer cells: the deadly survivors. Cell 183(4):860–874. https://doi.org/10.1016/j.cell.2020.10.027

    Article  CAS  PubMed  Google Scholar 

  5. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    Article  CAS  Google Scholar 

  6. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363. https://doi.org/10.1126/science.1092436

  7. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129. https://doi.org/10.1016/j.cell.2008.10.048

  8. Puig I, Tenbaum SP, Chicote I, Arques O, Martinez-Quintanilla J, Cuesta-Borras E, Ramirez L, Gonzalo P, Soto A, Aguilar S, Eguizabal C, Caratu G, Prat A, Argiles G, Landolfi S, Casanovas O, Serra V, Villanueva A, Arroyo AG, Terracciano L, Nuciforo P, Seoane J, Recio JA, Vivancos A, Dienstmann R, Tabernero J, Palmer HG (2018) TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence. J Clin Invest 128(9):3887–3905. https://doi.org/10.1172/JCI96393

Download references

Acknowledgments

We acknowledge Cellex Foundation, Fundación de la Associación Española Contra el Cáncer, and Instituto de Salud Carlos III for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor G. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Puig, I., Palmer, H.G. (2022). A Label Retaining System to Capture Slow-Cycling Cancer Cells. In: Baiocchi, M. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 2535. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2513-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2513-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2512-5

  • Online ISBN: 978-1-0716-2513-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation