Microbial Rhodopsins

  • Protocol
  • First Online:
Rhodopsin

Abstract

The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being “nearly the same.” The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function–structure relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 161.19
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 228.79
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  PubMed  Google Scholar 

  2. Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243

    Article  CAS  PubMed  Google Scholar 

  3. Hildebrand E, Dencher N (1975) Two photosystems controlling behavioral responses of Halobacterium halobium. Nature 257:46

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi T, Tomioka H, Kamo N et al (1985) A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. FEMS Microbiol Lett 28:161

    Article  CAS  Google Scholar 

  5. Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  PubMed  Google Scholar 

  6. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci 93:14532–14535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pebay-Peyroula E, Rummel G, Rosenbusch JP et al (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676

    Article  CAS  PubMed  Google Scholar 

  8. Luecke H, Richter HT, Lanyi JK (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280:1934

    Article  CAS  PubMed  Google Scholar 

  9. Neutze R, Pebay-Peyroula E, Edman K et al (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta Biomembr 1565:144

    Article  CAS  Google Scholar 

  10. Royant A, Edman K, Ursby T et al (2000) Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406:645–648

    Article  CAS  PubMed  Google Scholar 

  11. Schobert B, Cupp-Vickery J, Hornak V et al (2002) Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J Mol Biol 321:715

    Article  CAS  PubMed  Google Scholar 

  12. Luecke H, Schobert B, Richter HT et al (1999) Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286:255

    Article  CAS  PubMed  Google Scholar 

  13. Efremov R, Gordeliy VI, Heberle J et al (2006) Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. Biophys J 91:1441–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kouyama T, Nishikawa T, Tokuhisa T et al (2004) Crystal structure of the L intermediate of Bacteriorhodopsin: evidence for vertical translocation of a water molecule during the proton pum** cycle. J Mol Biol 335:531–546

    Article  CAS  PubMed  Google Scholar 

  15. Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    Article  CAS  PubMed  Google Scholar 

  16. Edmonds BW, Luecke H (2004) Atomic resolution structures and the mechanism of ion pum** in bacteriorhodopsin. Front Biosci 9:1556–1566

    Article  CAS  PubMed  Google Scholar 

  17. Nango E, Royant A, Kubo M et al (2016) A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552–1557

    Article  CAS  PubMed  Google Scholar 

  18. Borshchevskiy V, Round E, Erofeev I et al (2014) Low-dose X-ray radiation induces structural alterations in proteins. Acta Crystallogr D Biol Crystallogr 70:2675–2685

    Article  CAS  PubMed  Google Scholar 

  19. Borshchevskiy V, Efremov R, Moiseeva E et al (2010) Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase. Acta Crystallogr D Biol Crystallogr 66:26–32

    Article  CAS  PubMed  Google Scholar 

  20. Borshchevskiy VI, Round ES, Popov AN et al (2011) X-ray-radiation-induced changes in bacteriorhodopsin structure. J Mol Biol 409:813–825

    Article  CAS  PubMed  Google Scholar 

  21. Borshchevskiy V, Gordeliy V (2012) Crystallization of membrane proteins: merohedral twinning of crystals. In: Modern aspects of bulk crystal and thin film preparation. InTechOpen, London

    Google Scholar 

  22. Wickstrand C, Dods R, Royant A et al (2015) Bacteriorhodopsin: would the real structural intermediates please stand up? Biochim Biophys Acta 1850:536

    Article  CAS  PubMed  Google Scholar 

  23. Nogly P, Weinert T, James D et al (2018) Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:eaat0094

    Article  PubMed  CAS  Google Scholar 

  24. Weinert T, Skopintsev P, James D et al (2019) Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365:61

    Article  CAS  PubMed  Google Scholar 

  25. Nass Kovacs G, Colletier JP, Grünbein ML et al (2019) Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat Commun 10:3177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Beja O, Aravind L, Koonin EV et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  CAS  PubMed  Google Scholar 

  27. Nagel G (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  28. Inoue K, Ono H, Abe-Yoshizumi R et al (2013) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678

    Article  PubMed  CAS  Google Scholar 

  29. Avelar GM, Schumacher RI, Zaini PA et al (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Govorunova EG, Sineshchekov OA, Janz R et al (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inoue K, Ito S, Kato Y et al (2016) A natural light-driven inward proton pump. Nat Commun 7:13415

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shevchenko V, Mager T, Kovalev K et al (2017) Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci Adv 3:e1603187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pushkarev A, Inoue K, Larom S et al (2018) A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:595–599

    Article  CAS  PubMed  Google Scholar 

  34. Shihoya W, Inoue K, Singh M et al (2019) Crystal structure of heliorhodopsin. Nature 574:132–136

    Article  CAS  PubMed  Google Scholar 

  35. Lu Y, Zhou XE, Gao X et al (2020) Crystal structure of heliorhodopsin 48C12. Cell Res 30:88–90

    Article  CAS  PubMed  Google Scholar 

  36. Kovalev K, Volkov D, Astashkin R et al (2020) High-resolution structural insights into the heliorhodopsin family. Proc Natl Acad Sci 117:4131–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gómez-Consarnau L, Raven JA, Levine NM et al (2019) Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci Adv 5:eaaw8855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yutin N, Koonin EV (2012) Proteorhodopsin genes in giant viruses. Biol Direct 7:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bratanov D, Kovalev K, Machtens J-P et al (2019) Unique structure and function of viral rhodopsins. Nat Commun 10:4939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Needham DM, Yoshizawa S, Hosaka T et al (2019) A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci 116:20574–20583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dassarma S, Schwieterman EW (2018) Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. Int J Astrobiol 20:241

    Article  CAS  Google Scholar 

  42. Olson DK, Yoshizawa S, Boeuf D et al (2018) Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J 12:1047–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Becker EA, Yao AI, Seitzer PM et al (2016) A large and phylogenetically diverse class of type 1 opsins lacking a canonical retinal binding site. PLoS One 11:1–20

    Google Scholar 

  44. Frigaard NU, Martinez A, Mincer TJ et al (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850

    Article  CAS  PubMed  Google Scholar 

  45. Slamovits CH, Okamoto N, Burri L et al (2011) A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat Commun 2:183

    Article  PubMed  CAS  Google Scholar 

  46. Nakajima Y, Tsukamoto T, Kumagai Y et al (2018) Presence of a haloarchaeal halorhodopsin-like Cl– pump in marine bacteria. Microbes Environ 33:89–97

    Article  PubMed  PubMed Central  Google Scholar 

  47. Antón J, Rosselló-Mora R, Rodríguez-Valera F et al (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kall L, Krogh A, Sonnhammer ELL (2007) Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 35:W429–W432

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mongodin EF, Nelson KE, Daugherty S et al (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci U S A 102:18147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Balashov SP, Imasheva ES, Boichenko VA et al (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Balashov SP, Imasheva ES, Wang JM et al (2008) Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys J 95:2402–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    Article  CAS  Google Scholar 

  54. Oren A, Heldal M, Norland S et al (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491–498

    Article  CAS  PubMed  Google Scholar 

  55. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wickstrand C, Nogly P, Nango E et al (2019) Bacteriorhodopsin: structural insights revealed using X-ray lasers and synchrotron radiation. Annu Rev Biochem 88:59

    Article  CAS  PubMed  Google Scholar 

  57. Sharma AK, Spudich JL, Doolittle WF (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463

    Article  CAS  PubMed  Google Scholar 

  58. Pinhassi J, DeLong EF, Béjà O et al (2016) Marine bacterial and archaeal ion-pum** rhodopsins: genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev 80:929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chizhov I, Chernavskii DS, Engelhard M et al (1996) Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J 71:2329–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hofrichter J, Henry ER, Lozier RH (1989) Photocycles of bacteriorhodopsin in light- and dark-adapted purple membrane studied by time-resolved absorption spectroscopy. Biophys J 56:693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kandori H (2004) Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim Biophys Acta 1658:72

    Article  CAS  PubMed  Google Scholar 

  62. Gerwert K, Freier E, Wolf S (2014) The role of protein-bound water molecules in microbial rhodopsins. Biochim Biophys Acta - Bioenerg 1837:606–613

    Article  CAS  Google Scholar 

  63. Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinez-Garcia M, Swan BK, Poulton NJ et al (2012) High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6:113

    Article  CAS  PubMed  Google Scholar 

  65. Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304:66

    Article  CAS  PubMed  Google Scholar 

  66. Gushchin I, Chervakov P, Kuzmichev P et al (2013) Structural insights into the proton pum** by unusual proteorhodopsin from nonmarine bacteria. Proc Natl Acad Sci 110:12631–12636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dioumaev AK, Brown LS, Shih J et al (2002) Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41:5348

    Article  CAS  PubMed  Google Scholar 

  68. Ran T, Ozorowski G, Gao Y et al (2013) Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr D Biol Crystallogr 69:1965

    Article  CAS  PubMed  Google Scholar 

  69. Hempelmann F, Hölper S, Verhoefen MK et al (2011) His75-Asp97 cluster in green proteorhodopsin. J Am Chem Soc 133:4645

    Article  CAS  PubMed  Google Scholar 

  70. Váró G, Brown LS, Lakatos M et al (2003) Characterization of the photochemical reaction cycle of proteorhodopsin. Biophys J 84:1202

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lakatos M, Lanyi JK, Szakács J et al (2003) The photochemical reaction cycle of proteorhodopsin at low pH. Biophys J 84:3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawanabe A, Furutani Y, Jung KH et al (2011) An inward proton transport using anabaena sensory rhodopsin. J Microbiol 49:1

    Article  CAS  PubMed  Google Scholar 

  73. Ugalde JA, Podell S, Narasingarao P et al (2011) Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol Direct 6:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vogeley L, Sineshchekov OA, Trivedi VD et al (2004) Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306:1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bulzu P-A, Andrei A-Ş, Salcher MM et al (2019) Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 4:1129–1137

    Article  CAS  PubMed  Google Scholar 

  76. Inoue K, Tsunoda SP, Singh M et al (2020) Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci Adv 6:eaaz2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harris A, Lazaratos M, Siemers M et al (2020) Mechanism of inward proton transport in an antarctic microbial rhodopsin. J Phys Chem B 124:4851–4872

    Article  CAS  PubMed  Google Scholar 

  78. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Harz H, Hegemann P (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351:489

    Article  CAS  Google Scholar 

  80. Ehlenbeck S, Gradmann D, Braun FJ et al (2002) Evidence for a light-induced H+ conductance in the eye of the green alga Chlamydomonas reinhardtii. Biophys J 82:740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Böhm M, Boness D, Fantisch E et al (2019) Channelrhodopsin-1 phosphorylation changes with phototactic behavior and responds to physiological stimuli in chlamydomonas. Plant Cell 31:886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  83. Gradinaru V, Zhang F, Ramakrishnan C et al (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang F, Aravanis AM, Adamantidis A et al (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577

    Article  CAS  PubMed  Google Scholar 

  85. Gunaydin LA, Yizhar O, Berndt A et al (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392

    Article  CAS  PubMed  Google Scholar 

  86. Marshel JH, Kim YS, Machado TA et al (2019) Cortical layer-specific critical dynamics triggering perception. Science 365:eaaw5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Govorunova EG, Sineshchekov OA, Rodarte EM et al (2017) The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci Rep 7:43358

    Article  PubMed  PubMed Central  Google Scholar 

  88. Berndt A, Lee SY, Wietek J et al (2016) Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci U S A 113:822

    Article  CAS  PubMed  Google Scholar 

  89. Kato HE, Kim YS, Paggi JM et al (2018) Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature 561:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oppermann J, Fischer P, Silapetere A et al (2019) MerMAIDs: a family of metagenomically discovered marine anion-conducting and intensely desensitizing channelrhodopsins. Nat Commun 10:3315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mager T, La Morena DLD, Senn V et al (2018) High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat Commun 9:1750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Vogt A, Silapetere A, Grimm C et al (2019) Engineered passive potassium conductance in the KR2 sodium pump. Biophys J 116:1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grimm C, Silapetere A, Vogt A et al (2018) Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2. Sci Rep 8:9316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhang F, Prigge M, Beyrière F et al (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oda K, Vierock J, Oishi S et al (2018) Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat Commun 9:3949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mukherjee S, Hegemann P, Broser M (2019) Enzymerhodopsins: novel photoregulated catalysts for optogenetics. Curr Opin Struct Biol 57:118

    Article  CAS  PubMed  Google Scholar 

  98. Scheib U, Broser M, Constantin OM et al (2018) Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain. Nat Commun 9:2046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin JY, Lin MZ, Steinbach P et al (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of Channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279

    Article  CAS  PubMed  Google Scholar 

  102. Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  103. Kleinlogel S, Feldbauer K, Dempski RE et al (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518

    Article  CAS  PubMed  Google Scholar 

  104. Wietek J, Wiegert JS, Adeishvili N et al (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412

    Article  CAS  PubMed  Google Scholar 

  105. Lin JY, Knutsen PM, Muller A et al (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Govorunova EG, Sineshchekov OA, Spudich JL (2016) Structurally distinct cation channelrhodopsins from Cryptophyte algae. Biophys J 110:2302–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sineshchekov OA, Govorunova EG, Li H et al (2020) Conductance mechanisms of rapidly desensitizing cation channelrhodopsins from cryptophyte algae. MBio 11:e00657–e00620

    Article  PubMed  PubMed Central  Google Scholar 

  108. López JL, Golemba M, Hernández E et al (2017) Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions. FEMS Microbiol Ecol 93:9

    Article  CAS  Google Scholar 

  109. Philosof A, Béjà O (2013) Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ Microbiol Rep 5:475

    Article  CAS  PubMed  Google Scholar 

  110. Zabelskii D, Alekseev A, Kovalev K et al (2020) Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat Commun 11:5707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Berndt A, Lee SY, Ramakrishnan C et al (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sineshchekov OA, Govorunova EG, Jung K-H et al (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J 89:4310–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eisenhauer K, Kuhne J, Ritter E et al (2012) In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle. J Biol Chem 287:6904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim YS, Kato HE, Yamashita K et al (2018) Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 561:343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li H, Huang C-Y, Govorunova EG et al (2019) Crystal structure of a natural light-gated anion channelrhodopsin. elife 8:e41741

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sineshchekov OA, Li H, Govorunova EG et al (2016) Photochemical reaction cycle transitions during anion channelrhodopsin gating. Proc Natl Acad Sci 113:E1993–E2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sineshchekov OA, Govorunova EG, Li H et al (2015) Gating mechanisms of a natural anion channelrhodopsin. Proc Natl Acad Sci 112:14236–14241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kuhne J, Vierock J, Tennigkeit SA et al (2019) Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc Natl Acad Sci U S A 116:9380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bork P, Bowler C, De Vargas C et al (2015) Tara Oceans studies plankton at Planetary scale. Science 348:873

    Article  CAS  PubMed  Google Scholar 

  121. Gregory AC, Zayed AA, Conceição-Neto N et al (2019) Marine DNA viral macro- and microdiversity from pole to pole. Cell 177:1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nack M, Radu I, Gossing M et al (2010) The DC gate in channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156. Photochem Photobiol Sci 9:194

    Article  CAS  PubMed  Google Scholar 

  123. Rozenberg A, Oppermann J, Wietek J et al (2020) Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses. Microbiology 30:4910

    CAS  Google Scholar 

  124. Govorunova EG, Sineshchekov OA, Li H et al (2020) RubyACRs, nonalgal anion channelrhodopsins with highly red-shifted absorption. Proc Natl Acad Sci 117:22833–22840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Matsuno-Yagi A, Mukohata Y (1980) ATP synthesis linked to light-dependent proton uptake in a red mutant strain of Halobacterium lacking bacteriorhodopsin. Arch Biochem Biophys 199:297–303

    Article  CAS  PubMed  Google Scholar 

  126. Sasaki J, Brown LS, Chon YS et al (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269:73

    Article  CAS  PubMed  Google Scholar 

  127. Kolbe M, Besir H, Essen LO et al (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288:1390

    Article  CAS  PubMed  Google Scholar 

  128. Luecke H, Schobert B, Richter HT et al (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  129. Muroda K, Nakashima K, Shibata M et al (2012) Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 51:4677

    Article  CAS  PubMed  Google Scholar 

  130. Gmelin W, Zeth K, Efremov R et al (2007) The crystal structure of the L1 intermediate of halorhodopsin at 1.9 Å resolution†. Photochem Photobiol 83:369

    Article  CAS  PubMed  Google Scholar 

  131. Lanyi JK, Vodyanoy V (1986) Flash spectroscopic studies of the kinetics of the halorhodopsin photocycle. Biochemistry 25:1465

    Article  CAS  PubMed  Google Scholar 

  132. Chizhov I, Engelhard M (2001) Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J 81:1600–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hasemi T, Kikukawa T, Kamo N et al (2016) Characterization of a cyanobacterial chloride-pum** rhodopsin and its conversion into a proton pump. J Biol Chem 291:355

    Article  CAS  PubMed  Google Scholar 

  134. Niho A, Yoshizawa S, Tsukamoto T et al (2017) Demonstration of a light-driven SO42-transporter and its spectroscopic characteristics. J Am Chem Soc 139:4376

    Article  CAS  PubMed  Google Scholar 

  135. Inoue K, Koua FHM, Kato Y et al (2014) Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J Phys Chem B 118:11190–11199

    Article  CAS  PubMed  Google Scholar 

  136. Yoshizawa S, Kumagai Y, Kim H et al (2014) Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci U S A 111:6732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim K, Kwon S-K, Jun S-H et al (2016) Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat Commun 7:12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Inoue K, Nomura Y, Kandori H (2016) Asymmetric functional conversion of eubacterial light-driven ion pumps. J Biol Chem 291:9883–9893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kaneko A, Inoue K, Kojima K et al (2017) Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 9:861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kato Y, Inoue K, Kandori H (2015) Kinetic analysis of H+–Na+ selectivity in a light-driven Na+-pum** rhodopsin. J Phys Chem Lett 6:5111–5115

    Article  CAS  PubMed  Google Scholar 

  141. Kandori H, Inoue K, Tsunoda SP (2018) Light-driven sodium-pum** rhodopsin: a new concept of active transport. Chem Rev 118:10646–10658

    Article  CAS  PubMed  Google Scholar 

  142. Balashov SP, Imasheva ES, Dioumaev AK et al (2014) Light-driven Na+ pump from Gillisia limnaea: a high-affinity Na+ binding site is formed transiently in the photocycle. Biochemistry 53:7549–7561

    Article  CAS  PubMed  Google Scholar 

  143. Kato HE, Inoue K, Abe-Yoshizumi R et al (2015) Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521:48–53

    Article  CAS  PubMed  Google Scholar 

  144. Gushchin I, Shevchenko V, Polovinkin V et al (2015) Crystal structure of a light-driven sodium pump. Nat Struct Mol Biol 22:390–396

    Article  CAS  PubMed  Google Scholar 

  145. Kovalev K, Polovinkin V, Gushchin I et al (2019) Structure and mechanisms of sodium-pum** KR2 rhodopsin. Sci Adv 5:eaav2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Konno M, Kato Y, Kato HE et al (2016) Mutant of a light-driven sodium ion pump can transport cesium ions. J Phys Chem Lett 7:51–55

    Article  CAS  PubMed  Google Scholar 

  147. Mamedov AM, Bertsova YV, Anashkin VA et al (2018) Identification of the key determinant of the transport promiscuity in Na+-translocating rhodopsins. Biochem Biophys Res Commun 499:600–604

    Article  CAS  PubMed  Google Scholar 

  148. Kateriya S (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    CAS  PubMed  Google Scholar 

  149. Luck M, Mathes T, Bruun S et al (2012) A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 287:40083–40090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dunin-Horkawicz S, Lupas AN (2010) Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol 397:1156

    Article  CAS  PubMed  Google Scholar 

  151. Tian Y, Gao S, von der Heyde EL et al (2018) Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biol 16:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1

    Article  CAS  PubMed  Google Scholar 

  153. Yoshida K, Tsunoda SP, Brown LS et al (2017) A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. J Biol Chem 292:7531–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lamarche LB, Kumar RP, Trieu MM et al (2017) Purification and characterization of RhoPDE, a retinylidene/phosphodiesterase fusion protein and potential optogenetic tool from the choanoflagellate Sal**oeca rosetta. Biochemistry 56:5812

    Article  CAS  PubMed  Google Scholar 

  155. Pandit J, Forman MD, Fennell KF et al (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A 106:18225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ikuta T, Shihoya W, Sugiura M et al (2020) Structural insights into the mechanism of rhodopsin phosphodiesterase. Nat Commun 11:5605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rauch A, Leipelt M, Russwurm M et al (2008) Crystal structure of the guanylyl cyclase Cya2. Proc Natl Acad Sci U S A 105:15720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Trieu MM, Devine EL, Lamarche LB et al (2017) Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus Blastocladiella emersonii. J Biol Chem 292:10379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Scheib U, Stehfest K, Gee CE et al (2015) The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci Signal 8:rs8

    Article  PubMed  CAS  Google Scholar 

  160. Feldbauer K, Zimmermann D, Pintschovius V et al (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shibukawa A, Kojima K, Nakajima Y et al (2019) Photochemical characterization of a new heliorhodopsin from the gram-negative eubacterium Bellilinea caldifistulae (BcHeR) and comparison with heliorhodopsin-48C12. Biochemistry 58:2934

    Article  CAS  PubMed  Google Scholar 

  162. Singh M, Katayama K, Béjà O et al (2019) Anion binding to mutants of the Schiff base counterion in heliorhodopsin 48C12. Phys Chem Chem Phys 21:23663

    Article  CAS  PubMed  Google Scholar 

  163. Hashimoto M, Katayama K, Furutani Y et al (2020) Zinc binding to heliorhodopsin. J Phys Chem Lett 11:8604–8609

    Article  CAS  PubMed  Google Scholar 

  164. Volkov O, Kovalev K, Polovinkin V et al (2017) Structural insights into ion conduction by channelrhodopsin 2. Science 358:eaan8862

    Article  PubMed  CAS  Google Scholar 

  165. Luecke H, Schobert B, Stagno J et al (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Morizumi T, Ou WL, Van Eps N et al (2019) X-ray crystallographic structure and oligomerization of gloeobacter rhodopsin. Sci Rep 9:11283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Tsukamoto T, Mizutani K, Hasegawa T et al (2016) X-ray crystallographic structure of thermophilic rhodopsin: implications for high thermal stability and optogenetil function. J Biol Chem 291:12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Klyszejko AL, Shastri S, Mari SA et al (2008) Folding and assembly of proteorhodopsin. J Mol Biol 376:35

    Article  CAS  PubMed  Google Scholar 

  169. Yang J, Aslimovska L, Glaubitz C (2011) Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J Am Chem Soc 133:4874

    Article  CAS  PubMed  Google Scholar 

  170. Reckel S, Gottstein D, Stehle J et al (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Eng 50:11942

    Article  CAS  Google Scholar 

  171. Shi L, Lake EMR, Ahmed MAM et al (2009) Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochim Biophys Acta Biomembr 1788:2563

    Article  CAS  Google Scholar 

  172. Gushchin I, Gordeliy V (2018) Microbial rhodopsins. Subcell Biochem 87:19

    Article  CAS  PubMed  Google Scholar 

  173. Ho BK, Gruswitz F (2008) HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  174. Petrovskaya LE, Balashov SP, Lukashev EP et al (2015) ESR — a retinal protein with unusual properties from Exiguobacterium sibiricum. Biochem Mosc 80:688–700

    Article  CAS  Google Scholar 

  175. Harris A, Ljumovic M, Bondar AN et al (2015) A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor. Biochim Biophys Acta Bioenerg 1847:1518

    Article  CAS  Google Scholar 

  176. Maliar N, Okhrimenko IS, Petrovskaya LE et al (2020) Novel pH-sensitive microbial rhodopsin from Sphingomonas paucimobilis. Dokl Biochem Biophys 495:342–346

    Article  CAS  PubMed  Google Scholar 

  177. Lawson MA, Zacks DN, Derguini F et al (1991) Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Biophys J 60:1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rappleye M, Berndt A (2019) Structural basis for ion selectivity and engineering in channelrhodopsins. Curr Opin Struct Biol 57:176

    Article  CAS  PubMed  Google Scholar 

  179. Nogly P, Standfuss J (2015) Light-driven Na+ pumps as next-generation inhibitory optogenetic tools. Nat Struct Mol Biol 22:351

    Article  CAS  PubMed  Google Scholar 

  180. Maliar N, Kovalev K, Baeken C et al (2020) Crystal structure of the N112A mutant of the light-driven sodium pump KR2. Crystals 10:496

    Article  CAS  Google Scholar 

  181. Kovalev K, Astashkin R, Gushchin I et al (2020) Molecular mechanism of light-driven sodium pum**. Nat Commun 11:2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Skopintsev P, Ehrenberg D, Weinert T et al (2020) Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 583:314–318

    Article  CAS  PubMed  Google Scholar 

  183. Shibata M, Inoue K, Ikeda K et al (2018) Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci Rep 8:8262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Gushchin I, Shevchenko V, Polovinkin V et al (2016) Structure of the light-driven sodium pump KR2 and its implications for optogenetics. FEBS J 283:1232–1238

    Article  CAS  PubMed  Google Scholar 

  185. Zheng H, Chruszcz M, Lasota P et al (2008) Data mining of metal ion environments present in protein structures. J Inorg Biochem 102:1765–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kouyama T, Kawaguchi H, Nakanishi T et al (2015) Crystal structures of the L1, L2, N, and O states of pharaonis halorhodopsin. Biophys J 108:2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yun JH, Li X, Park JH et al (2019) Non-cryogenic structure of a chloride pump provides crucial clues to temperature-dependent channel transport efficiency. J Biol Chem 294:794

    Article  CAS  PubMed  Google Scholar 

  188. Fudim R, Szczepek M, Vierock J et al (2019) Design of a light-gated proton channel based on the crystal structure of coccomyxa rhodopsin. Sci Signal 12:eaav4203

    Article  PubMed  CAS  Google Scholar 

  189. Nango E, Royant A, Kubo M et al (2016) A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552

    Article  CAS  PubMed  Google Scholar 

  190. Zemelman BV, Lee GA, Ng M et al (2002) Selective photostimulation of genetically ChARGed neurons. Neuron 33:15–22

    Article  CAS  PubMed  Google Scholar 

  191. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413

    Article  CAS  PubMed  Google Scholar 

  192. Li M, Atmaca-Sonmez P, Othman M et al (2006) CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet 38:1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dombrowski T, Rankovic V, Moser T (2019) Toward the optical cochlear implant. Cold Spring Harb Perspect Med 9:a033225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Anderson DJ (2012) Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry 71:1081

    Article  PubMed  Google Scholar 

  195. Josselyn SA, Tonegawa S (2020) Memory engrams: recalling the past and imagining the future. Science 367:eaaw4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. El-Shamayleh Y, Horwitz GD (2019) Primate optogenetics: progress and prognosis. Proc Natl Acad Sci U S A 116:26195

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Russian Science Foundation (RSF) Project 21-64-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Gordeliy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gordeliy, V. et al. (2022). Microbial Rhodopsins. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation