Modifying Bacterial Artificial Chromosomes for Extended Genome Modification

  • Protocol
  • First Online:
Applications of Genome Modulation and Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2495))

  • 1395 Accesses

Abstract

Bacterial artificial chromosomes have been used extensively for the exploration of mammalian genomes. Although novel approaches made their initial function expendable, the available BAC libraries are a precious source for life science. Their comprising of extended genomic regions provides an ideal basis for creating a large targeting vector. Here, we describe the identification of suitable BACs from their libraries and their verification prior to manipulation. Further, protocols for modifying BAC, confirming the desired modification and the preparation of transfection into mammalian cells are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shizuya H et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797

    Article  CAS  Google Scholar 

  2. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  Google Scholar 

  3. Archibald AL et al (2010) Pig genome sequence--analysis and publication strategy. BMC Genomics 11:438

    Article  Google Scholar 

  4. Bovine Genome S et al (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324(5926):522–528

    Article  Google Scholar 

  5. Wheeler DA et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876

    Article  CAS  Google Scholar 

  6. Genomes Project, C et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Article  Google Scholar 

  7. Jain M et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36(4):338–345

    Article  CAS  Google Scholar 

  8. Gordon D et al (2016) Long-read sequence assembly of the gorilla genome. Science 352(6281):aae0344

    Article  Google Scholar 

  9. Zhang Y et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128

    Article  CAS  Google Scholar 

  10. Muyrers JP et al (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27(6):1555–1557

    Article  CAS  Google Scholar 

  11. Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071

    Article  CAS  Google Scholar 

  12. Yu D et al (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97(11):5978–5983

    Article  CAS  Google Scholar 

  13. Vochozkova P et al (2019) Gene editing in primary cells of cattle and pig. Methods Mol Biol 1961:271–289

    Article  CAS  Google Scholar 

  14. Lee EC et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73(1):56–65

    Article  CAS  Google Scholar 

  15. Warming S et al (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33(4):e36

    Article  Google Scholar 

  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic acids symposium series. Information Retrieval Ltd., London, pp c1979–c2000

    Google Scholar 

  17. Osoegawa K et al (2001) A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11(3):483–496

    Article  CAS  Google Scholar 

  18. Rogel-Gaillard C et al (1999) Construction of a swine BAC library: application to the characterization and map** of porcine type C endoviral elements. Cytogenet Cell Genet 85(3–4):205–211

    Article  CAS  Google Scholar 

  19. Fahrenkrug SC et al (2001) A porcine BAC library with tenfold genome coverage: a resource for physical and genetic map integration. Mamm Genome 12(6):472–474

    Article  CAS  Google Scholar 

  20. Eggen A et al (2001) Construction and characterization of a bovine BAC library with four genome-equivalent coverage. Genet Sel Evol 33(5):543–548

    Article  CAS  Google Scholar 

  21. Dalrymple BP et al (2007) Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol 8(7):R152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Runa-Vochozkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Auch, H., Klymiuk, N., Runa-Vochozkova, P. (2022). Modifying Bacterial Artificial Chromosomes for Extended Genome Modification. In: Verma, P.J., Sumer, H., Liu, J. (eds) Applications of Genome Modulation and Editing. Methods in Molecular Biology, vol 2495. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2301-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2301-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2300-8

  • Online ISBN: 978-1-0716-2301-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation