Measuring Autophagosome Flux

  • Protocol
  • First Online:
Imaging and Quantifying Neuronal Autophagy

Part of the book series: Neuromethods ((NM,volume 171))

  • 772 Accesses

Abstract

Autophagy is an evolutionarily conserved catabolic process that plays an import role in cellular proteostasis. The continual degradation, and recycling, of portions of the cytoplasm through autophagy eliminates unused and toxic proteins and organelles, promoting a functional proteome and cellular function. Autophagy also serves as an important adaptive mechanism that protects against metabolic perturbation. Loss of autophagy activity has major detrimental effects and has been shown to lead to neuronal proteotoxicity, protein aggregation, and cell death onset associated with neurodegeneration. Studies aimed at modulating autophagy activity have shown promising results in clearing toxic protein cargo and preserving neuronal viability. Neurons are characterized by a particularly efficient autophagy system. However, to finely control autophagy activity requires the precise and accurate measurement of the autophagy flux, i.e., the rate of flow along the entire autophagy pathway. Fluorescence microscopy has substantially contributed to the assessment of autophagy, due to its ability to identify the autophagy pathway intermediates, and to describe them kinetically, in the entire cell volume. However, the quantitative discernment between autophagy pathway intermediates, particularly the autophagosome pool size and the autophagosome flux, has remained challenging. Here, we describe a single-cell analysis approach that allows the characterization of the autophagy system in terms of the pathway intermediate steady-state pool size, the autophagosome flux, and the transition time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z (2013) The variability of autophagy and cell death susceptibility: unanswered questions. Autophagy 9(9):1270–1285

    Article  CAS  Google Scholar 

  2. Jahreiss L, Menzies FM, Rubinsztein DC (2008) The itinerary of from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9:574–587

    Article  CAS  Google Scholar 

  3. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  Google Scholar 

  4. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  Google Scholar 

  5. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  Google Scholar 

  6. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome process by a novel reporter protein, tandem fluorescent tagged lc3. Autophagy 3:452–460

    Article  CAS  Google Scholar 

  7. Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T, Mizushima N (2016) An autophagic flux probe that releases an internal control. Mol Cell 17:835–849

    Article  Google Scholar 

  8. Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe M, Uchiyama Y (2006) Effects of rna interference of atg4b on the limited proteolysis of lc3 in pc12 cells and expression of atg4b in various rat tissues. Autophagy 2:200–208

    Article  CAS  Google Scholar 

  9. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26(7):1749–1760

    Article  CAS  Google Scholar 

  10. Loos B, du Toit A, Hofmeyr JHS (2014) Defining and measuring autophagosome flux—concept and reality. Autophagy 10(11):2087–2096

    Article  Google Scholar 

  11. du Toit A, Hofmeyr J-HS, Gniadek TJ, Loos B (2018) Measuring autophagosome flux. Autophagy 14:1060–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  13. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal. Chem Biol 18:1042–1052

    Article  CAS  Google Scholar 

  14. Hardelauf H, Waide S, Sisnaiske J, Jacob P, Hausherr V, Schöbel N, Janasek D, van Thriel C, West J (2014) Micropatterning neuronal networks. Analyst 139:3256–3264

    Article  CAS  Google Scholar 

  15. Carpi N, Piel M, Azioune A, Fink J (2011) Micropatterning on glass with deep UV. Protoc Exch 10

    Google Scholar 

  16. Loos B, Klionsky DJ, du Toit A, Hofmeyr JHS (2020) On the relevance of precision autophagy flux control in vivo—points of departure for clinical translation. Autophagy 16(4):750–762

    Article  CAS  Google Scholar 

  17. Van der Walt S, Schönberger J, Nunez-Iglesias J, Boulogne F, Warner J, Yager N, Gouillart E, Yu T (2014) scikit-image: image processing in python. PeerJ 2:e453

    Article  Google Scholar 

  18. Bradski G, Kaehler A (2000) Opencv. Dr Dobb’s J Softw Tools 120:122–125

    Google Scholar 

Download references

Acknowledgments

This work was supported by the South African Medical Research Council (SAMRC), the South African National Research Foundation (NRF), and the Cancer Association South Africa (CANSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Loos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

du Toit, A., Hofmeyr, JH.S., Loos, B. (2022). Measuring Autophagosome Flux. In: Loos, B., Wong, E. (eds) Imaging and Quantifying Neuronal Autophagy. Neuromethods, vol 171. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1589-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1589-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1588-1

  • Online ISBN: 978-1-0716-1589-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation