DNA Damage in Liver Cells of the Tilapia Fish Oreochromis mossambicus Larva Induced by the Insecticide Cyantraniliprole at Sublethal Doses During Chronic Exposure

  • Protocol
  • First Online:
Environmental Toxicology and Toxicogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2326))

Abstract

Cyantraniliprole can effectively control lepidopteran pests and has been used all over the world. In general, the risk of cyantraniliprole seems low for fish, but the toxicity selectivity among different fish species was not clear. Here, we present the methods for the acute toxicity and chronic effects of cyantraniliprole by using juvenile tilapia (Oreochromis mossambicus). Based on this test, 96 h LC50 of cyantraniliprole to tilapia was 38.0 mg/L. After exposed for 28 days, specific growth rates of the blank control, solution control, and the treatments of 0.037, 0.37 and 3.7 mg/L of cyantraniliprole were 1.14, 0.95, 0.93, 0.82, and 0.70% per day, respectively. The results of micronucleus experiment and single cell gel electrophoresis showed that cyantraniliprole damaged DNA in liver cells of tilapia larvae. Quantitative PCR results showed that cyantraniliprole could induce the upregulation of Rpa 3 that is responsible for the DNA repair. The significant downregulation of Chk 2 gene was related to p53 pathway. It is therefore proposed that cyantraniliprole causes DNA damage in liver cells of tilapia and activates DNA damage and repair pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parolini M, Magni S, Castiglioni S, Binelli A (2016) Genotoxic effects induced by the exposure to an environmental mixture of illicit drugs to the zebra mussel. Ecotoxicol Environ Saf 132:26–30

    Article  CAS  Google Scholar 

  2. Alleva R, Manzella N, Gaetani S, Ciarapica V, Bracci M, Caboni MF, Pasini F, Monaco F, Amati M, Borghi B, Tomasetti M (2016) Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response. Mol Nutr Food Res 60:2243–2255

    Article  CAS  Google Scholar 

  3. Želježić D, Mladinić M, Žunec S, Lucić Vrdoljak A, Kašuba V, Tariba B, Živković T, Marjanović AM, Pavičić I, Milić M, Rozgaj R, Kopjar N (2016) Cytotoxic, genotoxic and biochemical markers of insecticide toxicity evaluated in human peripheral blood lymphocytes and an HepG2 cell line. Food Chem Toxicol 96:90–106

    Article  Google Scholar 

  4. Li D, Huang Q, Lu M, Zhang L, Yang Z, Zong M, Tao L (2015) The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere 135:387–393

    Article  CAS  Google Scholar 

  5. Horibe A, Odashima S, Hamasuna N, Morita T, Hayashi M (2018) Weight of contribution of in vitro chromosomal aberration assay for evaluation of pesticides: experience of risk assessment at the food safety Commission of Japan. Regul Toxicol Pharmacol 95:133–141

    Article  CAS  Google Scholar 

  6. Yoshida M, McGregor D (2013) First draft prepared by Midori Yoshida1 and Douglas McGregor2 division of pathology. National Institute of Health Sciences, Tokyo, Japan

    Google Scholar 

  7. Wang M, Lu M (2016) Tilapia polyculture: a global review. Aquac Res 47:2363–2374

    Article  Google Scholar 

  8. Chen L, Jiang X, Feng H, Shi H, Sun L, Tao W, ** Q, Wang D (2016) Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J Endocrinol 228:205–218

    Article  CAS  Google Scholar 

  9. Stickney RR (1986) Tilapia tolerance of saline waters: a review. Prog Fish-Cult 48:161–167

    Article  Google Scholar 

  10. Tiwari S, Stelinski LL (2013) Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions. Pest Manag Sci 69:1066–1072

    Article  CAS  Google Scholar 

  11. Moreno I, Belando A, Grávalos C, Bielza P (2018) Baseline susceptibility of Mediterranean strains of Trialeurodes vaporariorum (Westwood) to cyantraniliprole. Pest Manag Sci 74:1552–1557

    Article  CAS  Google Scholar 

  12. Zhang R, Jang EB, He S, Chen J (2015) Lethal and sublethal effects of cyantraniliprole on Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Pest Manag Sci 71:250–256

    Article  CAS  Google Scholar 

  13. Xu C, Ding J, Zhao Y, Luo J, Mu W, Zhang Z (2017) Cyantraniliprole at sublethal dosages negatively affects the Development, reproduction, and nutrient utilization of Ostrinia furnacalis (Lepidoptera: Crambidae). J Econ Entomol 110:230–238

    Article  CAS  Google Scholar 

  14. Zhang Z, Xu C, Ding J, Zhao Y, Lin J, Liu F, Mu W (2019) Cyantraniliprole seed treatment efficiency against Agrotis ipsilon (Lepidoptera: Noctuidae) and residue concentrations in corn plants and soil. Pest Manag Sci 75:1464–1472

    Article  CAS  Google Scholar 

  15. Sharma AK, Zimmerman WT, Singles SK, Malekani K, Swain S, Ryan D, McQuorcodale G, Wardrope L (2014) Photolysis of chlorantraniliprole and cyantraniliprole in water and soil: verification of degradation pathways via kinetics modeling. J Agric Food Chem 62:6577–6584

    Article  CAS  Google Scholar 

  16. Authority EFS (2014) Conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole. EFSA Journal 12:3814

    Google Scholar 

  17. Lindahl T, Wood RD (1999) Quality control by. DNA Repair 286:1897–1905

    CAS  Google Scholar 

  18. Hayashi M (2016) The micronucleus test-most widely used in vivo genotoxicity test. Gene Environ 38:18

    Article  Google Scholar 

  19. Glei M, Schneider T, Schlörmann W (2016) Comet assay: an essential tool in toxicological research. Arch Toxicol 90:2315–2336

    Article  CAS  Google Scholar 

  20. Pei DS, Strauss PR (2013) Zebrafish as a model system to study DNA damage and repair. Mutat Res 743-744:151–159

    Article  CAS  Google Scholar 

  21. Chen HY (2017) Hepatotoxicity of commonly used organophosphate flame retardants in Aebraflsh (Danio rerio) School of the Environment. Nan**g University, Nan**g, Jiangsu, China

    Google Scholar 

  22. Development, O. f. E. C.-o. a. (1992) Test no. 203: fish, acute toxicity test. OECD Guidel. Test. Chem. 1, 1e10 (10)

    Google Scholar 

  23. El-Harbawi M (2014) Toxicity measurement of imidazolium ionic liquids using acute toxicity test. Procedia Chem 9:40–52

    Article  CAS  Google Scholar 

  24. Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M (2009) Buccal micronucleus cytome assay. Nat Protoc 4:825–837

    Article  CAS  Google Scholar 

  25. Lorenzo Y, Costa S, Collins AR, Azqueta A (2013) The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis 28:427–432

    Article  CAS  Google Scholar 

  26. Jordon-Thaden IE, Chanderbali AS, Gitzendanner MA, Soltis DE (2015) Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta. Appl Plant Sci 3:apps.1400105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Miao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fan, Y., Xu, C., Miao, W. (2021). DNA Damage in Liver Cells of the Tilapia Fish Oreochromis mossambicus Larva Induced by the Insecticide Cyantraniliprole at Sublethal Doses During Chronic Exposure. In: Pan, X., Zhang, B. (eds) Environmental Toxicology and Toxicogenomics. Methods in Molecular Biology, vol 2326. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1514-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1514-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1513-3

  • Online ISBN: 978-1-0716-1514-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation