Algae: Biomass to Biofuel

  • Protocol
  • First Online:
Biofuels and Biodiesel

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2290))

Abstract

Worldwide demand for ethanol alternative fuel has been emerging day by day owing to the rapid population growth and industrialization. Culturing microalgae as an alternative feedstock is anticipated to be a potentially significant approach for sustainable bioethanol biofuel production. Microalgae are abundant in nature, which grow at faster rates with a capability of storing high lipid and starch/cellulose contents inside their cells. This process offers several environmental advantages, including the effective utilization of land, good CO2 sequestration without entering into “food against fuel” dispute. This chapter focuses on the methods and processes used for the production of bioethanol biofuels from algae. Thus, it also covers significant achievements in the research and developments on algae bioethanol production, mainly including pretreatment, hydrolysis, and fermentation of algae biomass. The processes of producing biodiesel, biogas, and hydrogen have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vertès AA, Qureshi N, Blaschek HP, Yukawa H (2010) Biomass to biofuels—strategies for global industries, vol 84. John Wiley & Sons Ltd, Hoboken, pp 1819–1822. https://doi.org/10.1002/cite.201290099

    Book  Google Scholar 

  2. Agarwal AK, Agarwal RA, Gupta T, Gurjar BR (2017) Biofuels: technology, challenges and prospects. Springer Nature Singapore Pte Ltd, Singapore. https://doi.org/10.1007/978-981-10-3791-7

    Book  Google Scholar 

  3. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Branyikova I, Marsalkova B, Doucha J, Branyik T, Bisova K, Zachleder V, Vitova M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776. https://doi.org/10.1002/bit.23016

    Article  CAS  PubMed  Google Scholar 

  5. Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Algae for biofuels and energy, pp 133–152

    Chapter  Google Scholar 

  6. Pandey A, Lee D-J, Chisti Y, Soccol CR (2014) Preface. In: Biofuels from algae. Elsevier, Amsterdam, pp xi–xii

    Chapter  Google Scholar 

  7. Faizal Bux YC (2016) Algae biotechnology: products and processes. Springer Nature Singapore Pte Ltd., Singapore

    Google Scholar 

  8. Lee DJ, Pandey A, Chang J-S, Chisti Y, Soccol C (2018) Biomass, biofuels, biochemicals. Elsevier, Amsterdam

    Google Scholar 

  9. Chisti Y (2010) Fuels from microalgae. Biofuels 1:233–235

    Article  CAS  Google Scholar 

  10. Hussian A (2018) The role of microalgae in renewable energy production: Challenges and opportunities. In Türkoglu, M, Önal, U, Ismen, A (eds) Marine Ecology-Biotic and Abiotic Interactions. Intech Open, London, UK, 257–283. https://doi.org/10.5772/intechopen.73573

  11. Leite GB, Abdelaziz AE, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141. https://doi.org/10.1016/j.biortech.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  12. Sharma YC, Singh B, Korstad J (2011) A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chem 13:2993–3006. https://doi.org/10.1039/c1gc15535k

    Article  CAS  Google Scholar 

  13. Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38:965–977. https://doi.org/10.1002/er.3164

    Article  CAS  Google Scholar 

  14. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49:278–293. https://doi.org/10.1007/s13197-011-0290-7

    Article  CAS  PubMed  Google Scholar 

  15. Baldev E, Mubarakali D, Saravanakumar K, Arutselvan C, Alharbi NS, Alharbi SA, Sivasubramanian V, Thajuddin N (2018) Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. Renew Energy 123:486–498. https://doi.org/10.1016/j.renene.2018.02.032

    Article  CAS  Google Scholar 

  16. Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2014) Study of algal biomass harvesting through cationic cassia gum, a natural plant based biopolymer. Bioresour Technol 151:6–11. https://doi.org/10.1016/j.biortech.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  17. Barros AI, Gonçalves AL, Simões M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500. https://doi.org/10.1016/j.rser.2014.09.037

    Article  Google Scholar 

  18. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  19. Cesário MT, da Fonseca MMR, Marques MM, de Almeida MCMD (2018) Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol Adv 36:798–817. https://doi.org/10.1016/j.biotechadv.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  20. Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60:722–727. https://doi.org/10.1525/bio.2010.60.9.9

    Article  Google Scholar 

  21. Goh BHH, Ong HC, Cheah MY, Chen W-H, Yu KL, Mahlia TMI (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sust Energ Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012

    Article  CAS  Google Scholar 

  22. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JH (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  23. Milledge J, Smith B, Dyer P, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222. https://doi.org/10.3390/en7117194

    Article  CAS  Google Scholar 

  24. https://www.biologyonline.com/dictionary/algae

  25. Cyanophyta Naselli-Flores L, Barone R (2009) Green algae. In: Likens GE (ed) Encyclopedia of Inland waters. Academic Press, New York, pp 166–173. https://doi.org/10.1016/B978-012370626-3.00134-4

    Chapter  Google Scholar 

  26. Molina GE, Fernández FGA, Garcı́a Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247. https://doi.org/10.1016/S0168-1656(99)00078-4

    Article  Google Scholar 

  27. Miron ASN, Gomez AC, Camacho FGA, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  28. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506. https://doi.org/10.1021/bp060065r

    Article  CAS  PubMed  Google Scholar 

  29. Acién FG, Molina E, Reis A, Torzillo G, Zittelli GC, Sepúlveda C, Masojídek J (2017) 1—Photobioreactors for the production of microalgae. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts. Woodhead Publishing, Kindlington, pp 1–44

    Google Scholar 

  30. Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16:4316–4342. https://doi.org/10.1016/j.rser.2012.03.047

    Article  CAS  Google Scholar 

  31. Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzym Microb Technol 7:474–487. https://doi.org/10.1016/0141-0229(85)90148-6

    Article  Google Scholar 

  32. Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Biofuels 3:387–397. https://doi.org/10.4155/bfs.12.39

    Article  CAS  Google Scholar 

  33. Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. https://doi.org/10.1016/S0734-9750(02)00050-2

    Article  CAS  PubMed  Google Scholar 

  34. Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503–528. https://doi.org/10.1046/j.1365-313X.2001.01119.x

    Article  CAS  PubMed  Google Scholar 

  35. Letourneau DK, Robinson GS, Hagen JA (2003) Bt crops: predicting effects of escaped transgenes on the fitness of wild plants and their herbivores. Environ Biosaf Res 2:219–246. https://doi.org/10.1051/ebr:2003014

    Article  Google Scholar 

  36. Chiu S-Y, Kao C-Y, Chen C-H, Kuan T-C, Ong S-C, Lin C-S (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  37. Gao K, Yu H, Brown MT (2007) Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. J Photochem Photobiol B Biol 89:117–124. https://doi.org/10.1016/j.jphotobiol.2007.09.006

    Article  CAS  Google Scholar 

  38. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117. https://doi.org/10.1007/s10811-008-9336-2

    Article  CAS  Google Scholar 

  39. In 2011, fossil fuels accounted for approximately 82 percent of the world’s primary energy use, but this is expected to fall to 78 percent by 2040 (from EIA, Monthly Review, 2011)

    Google Scholar 

  40. Demirbas A, Karslioglu S (2007) Biodiesel production facilities from vegetable oils and animal fats. Energy Sources Part A Recovery Utilization Environmental Effects 29:133–141. https://doi.org/10.1080/009083190951320

    Article  CAS  Google Scholar 

  41. Alptekin E, Canakci M, Sanli H (2014) Biodiesel production from vegetable oil and waste animal fats in a pilot plant. Waste Manag 34:2146–2154. https://doi.org/10.1016/j.wasman.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  42. Suparmaniam U, Lam MK, Uemura Y, Lim JW, Lee KT, Shuit SH (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sust Energ Rev 115:109361. https://doi.org/10.1016/j.rser.2019.109361

    Article  CAS  Google Scholar 

  43. Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59. https://doi.org/10.1016/j.jclepro.2018.01.125

    Article  CAS  Google Scholar 

  44. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466. https://doi.org/10.1039/C0EE00593B

    Article  Google Scholar 

  45. de Farias Silva CE, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842. https://doi.org/10.1016/j.procbio.2016.02.016

    Article  CAS  Google Scholar 

  46. Chisti Y (2013) Raceways-based production of algal crude oil. Green 3:195

    Article  CAS  Google Scholar 

  47. Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H (2018) A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sust Energ Rev 82:3046–3059. https://doi.org/10.1016/j.rser.2017.10.033

    Article  CAS  Google Scholar 

  48. Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C (2019) Pyrolysis of microalgae: a critical review. Fuel Process Technol 186:53–72. https://doi.org/10.1016/j.fuproc.2018.12.012

    Article  CAS  Google Scholar 

  49. Lee J, Kwon EE, Park Y-K (2019) Recent advances in the catalytic pyrolysis of microalgae. Catal Today 355:263–271. https://doi.org/10.1016/j.cattod.2019.03.010

    Article  CAS  Google Scholar 

  50. Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  51. Duman G, Uddin MA, Yanik J (2014) Hydrogen production from algal biomass via steam gasification. Bioresour Technol 166:24–30. https://doi.org/10.1016/j.biortech.2014.04.096

    Article  CAS  PubMed  Google Scholar 

  52. Díaz-Rey MR, Cortés-Reyes M, Herrera C, Larrubia MA, Amadeo N, Laborde M, Alemany LJ (2015) Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. Catal Today 257:177–184. https://doi.org/10.1016/j.cattod.2014.04.035

    Article  CAS  Google Scholar 

  53. Chen Y, Wu Y, Hua D, Li C, Harold MP, Wang J, Yang M (2015) Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities. RSC Adv 5:18673–18701. https://doi.org/10.1039/C4RA13359E

    Article  CAS  Google Scholar 

  54. Rachna B, Renu D (2014) Algae as biofuel. Biofuels 5:607–631. https://doi.org/10.1080/17597269.2014.1003701

    Article  CAS  Google Scholar 

  55. Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  56. Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185. https://doi.org/10.1016/j.biortech.2010.06.136

    Article  CAS  PubMed  Google Scholar 

  57. Samorì C, López Barreiro D, Vet R, Pezzolesi L, Brilman DWF, Galletti P, Tagliavini E (2013) Effective lipid extraction from algae cultures using switchable solvents. Green Chem 15:353–356. https://doi.org/10.1039/C2GC36730K

    Article  Google Scholar 

  58. Jeevan Kumar SP, Vijay Kumar G, Dash A, Scholz P, Banerjee R (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 21:138–147. https://doi.org/10.1016/j.algal.2016.11.014

    Article  Google Scholar 

  59. Cicci A, Sed G, Jessop PG, Bravi M (2018) Circular extraction: an innovative use of switchable solvents for the biomass biorefinery. Green Chem 20:3908–3911. https://doi.org/10.1039/C8GC01731J

    Article  CAS  Google Scholar 

  60. Onumaegbu C, Mooney J, Alaswad A, Olabi AG (2018) Pre-treatment methods for production of biofuel from microalgae biomass. Renew Sust Energ Rev 93:16–26. https://doi.org/10.1016/j.rser.2018.04.015

    Article  CAS  Google Scholar 

  61. Dai Y-M, Chen K-T, Chen C-C (2014) Study of the microwave lipid extraction from microalgae for biodiesel production. Chem Eng J 250:267–273. https://doi.org/10.1016/j.cej.2014.04.031

    Article  CAS  Google Scholar 

  62. Wahidin S, Idris A, Shaleh SRM (2014) Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers Manag 84:227–233. https://doi.org/10.1016/j.enconman.2014.04.034

    Article  CAS  Google Scholar 

  63. El Sherbiny SA, Refaat AA, El Sheltawy ST (2010) Production of biodiesel using the microwave technique. J Adv Res 1:309–314. https://doi.org/10.1016/j.jare.2010.07.003

    Article  Google Scholar 

  64. Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153. https://doi.org/10.1023/A:1023807011027

    Article  Google Scholar 

  65. Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902. https://doi.org/10.1016/j.ultsonch.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  66. Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465. https://doi.org/10.1016/j.biortech.2012.02.096

    Article  CAS  PubMed  Google Scholar 

  67. Carrillo-Reyes J, Barragán-Trinidad M, Buitrón G (2016) Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: a review. Algal Res 18:341–351. https://doi.org/10.1016/j.algal.2016.07.004

    Article  Google Scholar 

  68. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. https://doi.org/10.1021/ie801542g

    Article  CAS  Google Scholar 

  69. **menes E, Farinas CS, Kim Y, Ladisch MR (2017) Hydrothermal pretreatment of lignocellulosic biomass for bioethanol production. In: Ruiz H, Hedegaard TM, Trajano H (eds) Hydrothermal processing in biorefineries. Springer, Cham

    Google Scholar 

  70. Lorente E, Farriol X, Salvadó J (2015) Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Process Technol 131:93–98. https://doi.org/10.1016/j.fuproc.2014.11.009

    Article  CAS  Google Scholar 

  71. Lorenzen J, Igl N, Tippelt M, Stege A, Qoura F, Sohling U, Brück T (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng 40:911–918. https://doi.org/10.1007/s00449-017-1755-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945. https://doi.org/10.1016/j.cej.2014.10.049

    Article  CAS  Google Scholar 

  73. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  CAS  Google Scholar 

  74. Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–449. https://doi.org/10.4155/bfs.11.116

    Article  CAS  Google Scholar 

  75. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factories 17:36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  76. Teter SA, Sutton KB, Emme B (2014) 7—Enzymatic processes and enzyme development in biorefining. In: Waldron K (ed) Advances in biorefineries. Woodhead Publishing, Cambridge, pp 199–233

    Chapter  Google Scholar 

  77. Ravanal MC, Camus C, Buschmann AH, Gimpel J, Olivera-Nappa Á, Salazar O, Lienqueo ME (2019) Chapter 4—Production of bioethanol from brown algae. In: Hosseini M (ed) Advances in feedstock conversion technologies for alternative fuels and bioproducts. Woodhead Publishing, Sawston, pp 69–88

    Chapter  Google Scholar 

  78. Liu ZH, Chen HZ (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour Technol 201:15–26. https://doi.org/10.1016/j.biortech.2015.11.023

    Article  CAS  PubMed  Google Scholar 

  79. Silva C, Soliman E, Cameron G, Fabiano LA, Seider WD, Dunlop EH, Coaldrake AK (2014) Commercial-scale biodiesel production from algae. Ind Eng Chem Res 53:5311–5324. https://doi.org/10.1021/ie403273b

    Article  CAS  Google Scholar 

  80. Mondal B, Jana AK (2019) Techno-economic feasibility of reactive distillation for biodiesel production from algal oil: comparing with a conventional multiunit system. Ind Eng Chem Res 58:12028–12040. https://doi.org/10.1021/acs.iecr.9b00347

    Article  CAS  Google Scholar 

  81. Mittelbach M (2012) 6—Advances in biodiesel catalysts and processing technologies. In: Luque R, Melero JA (eds) Advances in biodiesel production. Woodhead Publishing, Oxford, pp 133–153

    Chapter  Google Scholar 

  82. Chatsungnoen T, Chisti Y (2016) Oil production by six microalgae: impact of flocculants and drying on oil recovery from the biomass. J Appl Phycol 28:2697–2705. https://doi.org/10.1007/s10811-016-0823-6

    Article  CAS  Google Scholar 

  83. Chatsungnoen T, Chisti Y (2016) Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Res 15:100–109. https://doi.org/10.1016/j.algal.2016.02.015

    Article  Google Scholar 

  84. Nematian T, Barati M (2019) Nanobiocatalytic processes for producing biodiesel from algae. In Rai, M Avinash PI(eds) Sustainable Bioenergy. Elsevier, 299–326. https://doi.org/10.1016/B978-0-12-817654-2.00011-3

  85. Park J-Y, Park MS, Lee Y-C, Yang J-W (2015) Advances in direct transesterification of algal oils from wet biomass. Bioresour Technol 184:267–275. https://doi.org/10.1016/j.biortech.2014.10.089

    Article  CAS  PubMed  Google Scholar 

  86. Zhao C, Brück T, Lercher JA (2013) Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chem 15:1720–1739. https://doi.org/10.1039/C3GC40558C

    Article  CAS  Google Scholar 

  87. Ooi XY, Gao W, Ong HC, Lee HV, Juan JC, Chen WH, Lee KT (2019) Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts. Renew Sust Energ Rev 112:834–852. https://doi.org/10.1016/j.rser.2019.06.031

    Article  CAS  Google Scholar 

  88. Oi LE, Choo M-Y, Lee HV, Rahman NA, Juan JC (2019) Chapter 9—Mesoporous and other types of catalysts for conversion of non-edible oil to biogasoline via deoxygenation. In: Rai M, Ingle AP (eds) Sustainable bioenergy. Elsevier, Amsterdam, pp 257–281

    Chapter  Google Scholar 

  89. Bwapwa JK, Anandraj A, Trois C (2018) Microalgae processing for jet fuel production. Biofuels Bioprod Biorefin 12:522–535. https://doi.org/10.1002/bbb.1878

    Article  CAS  Google Scholar 

  90. Soni VK, Sharma PR, Choudhary G, Pandey S, Sharma RK (2017) Ni/co-natural clay as green catalysts for microalgae oil to diesel-grade hydrocarbons conversion. ACS Sustain Chem Eng 5:5351–5359. https://doi.org/10.1021/acssuschemeng.7b00659

    Article  CAS  Google Scholar 

  91. Peng B, Yao Y, Zhao C, Lercher JA (2012) Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chem Int Ed 51:2072–2075. https://doi.org/10.1002/anie.201106243

    Article  CAS  Google Scholar 

  92. Song W, Zhao C, Lercher J (2013) Importance of size and distribution of Ni nanoparticles for the hydrodeoxygenation of microalgae oil. Chemistry 19:9833–9842. https://doi.org/10.1002/chem.201301005

    Article  CAS  PubMed  Google Scholar 

  93. Rogers KA, Zheng Y (2016) Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights. Chem Sus Chem 9:1750–1772. https://doi.org/10.1002/cssc.201600144

    Article  CAS  Google Scholar 

  94. Lee K, Kim MY, Choi M (2018) Effects of fatty acid structures on ketonization selectivity and catalyst deactivation. ACS Sustain Chem Eng 6:13035–13044. https://doi.org/10.1021/acssuschemeng.8b02576

    Article  CAS  Google Scholar 

  95. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65. https://doi.org/10.1039/B810100K

    Article  CAS  Google Scholar 

  96. Fu J, Lu X, Savage PE (2010) Catalytic hydrothermal deoxygenation of palmitic acid. Energy Environ Sci 3:311–317. https://doi.org/10.1039/B923198F

    Article  CAS  Google Scholar 

  97. Fu J, Lu X, Savage PE (2011) Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. Chem Sus Chem. 4:481–486. https://doi.org/10.1002/cssc.201000370

    Article  CAS  Google Scholar 

  98. Kim D, Vardon DR, Murali D, Sharma BK, Strathmann TJ (2016) Valorization of waste lipids through hydrothermal catalytic conversion to liquid hydrocarbon fuels with in situ hydrogen production. ACS Sustain Chem Eng 4:1775–1784. https://doi.org/10.1021/acssuschemeng.5b01768

    Article  CAS  Google Scholar 

  99. Miao C, Marin-Flores O, Dong T, Gao D, Wang Y, Garcia-Pérez M, Chen S (2018) Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2. ACS Sustain Chem Eng 6:4521–4530. https://doi.org/10.1021/acssuschemeng.7b02226

    Article  CAS  Google Scholar 

  100. ** M, Choi M (2019) Hydrothermal deoxygenation of triglycerides over carbon-supported bimetallic PtRe catalysts without an external hydrogen source. Mol Catal 474:110419. https://doi.org/10.1016/j.mcat.2019.110419

    Article  CAS  Google Scholar 

  101. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214. https://doi.org/10.1016/j.jbiotec.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  102. Kwietniewska E, Tys J (2014) Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energ Rev 34:491–500. https://doi.org/10.1016/j.rser.2014.03.041

    Article  CAS  Google Scholar 

  103. Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass: a review. Renew Sust Energ Rev 43:961–972. https://doi.org/10.1016/j.rser.2014.11.052

  104. Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41:12772–12798. https://doi.org/10.1016/j.ijhydene.2016.05.115

    Article  CAS  Google Scholar 

  105. Ghirardi ML (2015) Implementation of photobiological H2 production: the O2 sensitivity of hydrogenases. Photosynth Res 125:383–393. https://doi.org/10.1007/s11120-015-0158-1

    Article  CAS  PubMed  Google Scholar 

  106. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511. https://doi.org/10.1016/S0167-7799(00)01511-0

    Article  CAS  PubMed  Google Scholar 

  107. Fulbright SP, Robbins-Pianka A, Berg-Lyons D, Knight R, Reardon KF, Chisholm ST (2018) Bacterial community changes in an industrial algae production system. Algal Res 31:147–156. https://doi.org/10.1016/j.algal.2017.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88. https://doi.org/10.1016/j.algal.2013.11.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soni, V.K., Krishnapriya, R., Sharma, R.K. (2021). Algae: Biomass to Biofuel . In: Basu, C. (eds) Biofuels and Biodiesel. Methods in Molecular Biology, vol 2290. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1323-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1323-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1322-1

  • Online ISBN: 978-1-0716-1323-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation