Overview of Current Developments in Biobutanol Production Methods and Future Perspectives

  • Protocol
  • First Online:
Biofuels and Biodiesel

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2290))

Abstract

Renewable biobutanol production is receiving more attention toward substituting fossil-based nonrenewable fuels. Biobutanol is recognized as the top most biofuel with extraordinary properties as compared with gasoline. The demand for biobutanol production is increasing enormously due to application in various industries as chemical substituent. Biobutanol production technology has attracted many researchers toward implementation of replacing cost-effective substrate and easy method to recover from the fermentation broth. Sugarcane bagasse, algal biomass, crude glycerol, and lignocellulosic biomass are potential cost-effective substrates which could replace consistent glucose-based substrates. The advantages and limitations of these substrates have been discussed in this chapter. Moreover, finding the integrated biobutanol recovery methods is an important factor parameter in production of biobutanol. This chapter also concentrated on possibilities and drawbacks of obtainable integrated biobutanol recovery methods. Thus, successful process involving cost-effective substrate and biobutanol recovery methods could help to implementation of biobutanol production industry. Overall, this chapter has endeavored to increase the viability of industrial production of biobutanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xue C, Zhao XQ, Liu CG et al (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv 31:1575–1584

    Article  CAS  PubMed  Google Scholar 

  2. Bengelsdorf BS, Montoya J, Set L (2013) Butanol fermentation. Environ Technol 34(13–16):1691–1710. https://doi.org/10.1080/09593330.2013.827746

    Article  CAS  Google Scholar 

  3. Ndaba B, Chiyanzu I, Marx S (2015) n-Butanol derived from biochemical and chemical routes: a review. Biotechnol Rep 8:1–9

    Article  CAS  Google Scholar 

  4. Morone A, Pandey RA (2014) Lignocellulosic biobutanol production: gridlocks and potential remedies. Renew Sust Energ Rev 37:21–35

    Article  CAS  Google Scholar 

  5. Sarathy S, Vranckx S, Yasunanga K (2012) A comprehensive chemical kinetic combustion model for the four butanol isomers. Combust Flame 159:2028–2055

    Article  CAS  Google Scholar 

  6. Durre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  PubMed  CAS  Google Scholar 

  7. Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  CAS  PubMed  Google Scholar 

  8. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  9. Fernandez JC, Arnal JM, Gomez J et al (2012) A comparison of higher alcohols/diesel fuel blends in a diesel engine. Appl Energy 95:267–275

    Article  CAS  Google Scholar 

  10. Liu KM, Li YT, Yang J et al (2018) Comprehensive study of key operating parameters on combustion characteristics of butanol gasoline blends in a high speed SI engine. Appl Energy 212:13–32

    Article  CAS  Google Scholar 

  11. Feng RH, Fu JQ, Yang J et al (2015) Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend. Renew Energy 81:113–122

    Article  CAS  Google Scholar 

  12. Ibrahim A (2016) Performance and combustion characteristics of a diesel engine fueled by butanol-biodiesel-diesel blends. Appl Therm Eng 103:651–659

    Article  CAS  Google Scholar 

  13. Shahsavan M, Mack JH (2018) Numerical study of a boosted HCCI engine fueled with bio-butanol and isobutanol. Energy Convers Manag 157:28–40

    Article  CAS  Google Scholar 

  14. Zhen X, Wang Y, Liu D (2020) Bio-butanol as a new generation of clean alternative fuel for SI (sparkignition) and CI (compression ignition) engines. Renew Energy 147:2494–2521

    Article  CAS  Google Scholar 

  15. Santacesaria E, Carotenuto G, Tesser R et al (2012) Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts. Chem Eng J 179:209–220

    Article  CAS  Google Scholar 

  16. Juben N, James C, Dumesi A (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass derived carbohydrates. Catal Today 123:59–70

    Article  CAS  Google Scholar 

  17. Carvalho DL, Avillez RR, Rodrigues MT et al (2012) Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Appl Catal 416:96–100

    Article  CAS  Google Scholar 

  18. Scalbert J, Starzyk FT, Jacquot R et al (2014) Ethanol condensation to butanol at high temperatures over a basic heterogeneous catalyst: how relevant is acetaldehyde self-aldolization. J Catal 311:28–32

    Article  CAS  Google Scholar 

  19. Huang H, Liu H, Gan Y (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657

    Article  CAS  PubMed  Google Scholar 

  20. Ezeji T, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Y, Liu J, Jiang W et al (2015) Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv 33:1493–1501

    Article  CAS  PubMed  Google Scholar 

  22. Majidian P, Tabatabaei M, Zeinolabedini M et al (2017) Metabolic engineering of microorganisms for biofuel production. Renew Sustain Energy Rev 82:3863. https://doi.org/10.1016/j.rser.2017.10.085

    Article  CAS  Google Scholar 

  23. Nilsson RLK, Helmerius J (2015) Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor. Bioresour Technol 176:71–79

    Article  PubMed  CAS  Google Scholar 

  24. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosystems Eng 30:419–427. https://doi.org/10.1007/s00449-007-0137-9

    Article  CAS  Google Scholar 

  25. Liyanage H, Young M, Kashket ER (2000) Butanol tolerance of clostridium beijerinckii NCIMB 8052 associated with down-regulation of gldA by antisense RNA. J Mol Microbiol Biotechnol 2(1):87–93

    CAS  PubMed  Google Scholar 

  26. Atsumi S, Cann AF, Connor MR et al (2008) Metabolic engineering of Escherichia coli for n-butanol production. Metab Eng 10:305–311

    Article  CAS  PubMed  Google Scholar 

  27. Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    Article  CAS  PubMed  Google Scholar 

  28. El L, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363

    Article  CAS  Google Scholar 

  29. Wang M, Fan L, Tan T (2014) 1-Butanol production from glycerol by engineered. Klebsiella pneumonia. RSC Adv 4:57791–57798

    Article  CAS  Google Scholar 

  30. Wang M, Liu L, Fan L et al (2017) CRISPR based system for enhancing 1-butanol production inengineered Klebsiella pneumoniae. Process Biochem 56:139–146

    Article  CAS  Google Scholar 

  31. Steen EJ, Chan R, Prasad N et al (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Factories 7:36

    Article  CAS  Google Scholar 

  32. Krivoruchko A, Amatriain CS, Chen Y et al (2013) Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J Ind Microbiol Biotechnol 40:1051–1056

    Article  CAS  PubMed  Google Scholar 

  33. Yu M, Du Y, Jiang W et al (2011) Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Appl Microbiol Biotechnol 93(2):881–889. https://doi.org/10.1007/s00253-011-3736-y

    Article  CAS  PubMed  Google Scholar 

  34. Yu M, Zhang Y, Tang IC et al (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabol Eng 13:373–382

    Article  CAS  Google Scholar 

  35. Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vangnai AS, Arp DJ (2001) An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by ‘Pseudomonas butanovora’. Microbiology 147:745–756

    Article  CAS  PubMed  Google Scholar 

  37. Stephens E, Ross IL, Mussgnug JH et al (2010) Future prospects of microalgal biofuel production systems—a review. Trends Plant Sci 15(10):554–564. https://doi.org/10.1016/j.tplants.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  38. Spolaore P, Cassan CJ, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  39. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  40. Gomes A, Rodrigues MI, Passos DF et al (2019) Acetone–butanol–ethanol fermentation from sugarcane bagasse hydrolysates: utilization of C5 and C6 sugars. Electron J Biotechnol 42:16–22

    Article  CAS  Google Scholar 

  41. Cheng HH, Whang LM, Chan KC et al (2015) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385. https://doi.org/10.1016/j.biortech.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  42. Hou X, From N, Angelidaki I et al (2017) Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422. Bioresour Technol 238:16–21

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Horsman M, Wu N et al (2008) Biocatalysts and bioreactor design. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  44. Onay M (2020) The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel 273:117795

    Article  CAS  Google Scholar 

  45. Kumar LR, Yellapu SK, Tyagi RD et al (2019) A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresour Technol 293:122155

    Article  CAS  PubMed  Google Scholar 

  46. Kaushal M, Ahlawat S, Makut BB et al (2019) Dual substrate fermentation strategy utilizing rice straw hydrolysate and crude glycerol for liquid biofuel production by Clostridium sporogenes NCIM 2918. Biomass Bioenergy 127:105257

    Article  CAS  Google Scholar 

  47. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353. https://doi.org/10.1007/s13205-014-0246-5

    Article  PubMed  Google Scholar 

  48. Branska B, Fortova L, Dvorakov M et al (2020) Chicken feather and wheat straw hydrolysate for direct utilization in biobutanol production. Renew Energy 145:1941–1948

    Article  CAS  Google Scholar 

  49. Saekhow B, Chookamlang S, Na-u-dom A et al (2020) Enzymatic hydrolysis of cassava stems for butanol production of isolated Clostridium sp. Energy Rep 6:196–201

    Article  Google Scholar 

  50. Sun X, Atiyeh HK, Adesanya Y et al (2019) Feasibility of using biochar as buffer and mineral nutrients replacement for acetone-butanol-ethanol production from non-detoxified switchgrass hydrolysate. Bioresour Technol 298:122569. https://doi.org/10.1016/j.biortech.2019.122569

    Article  CAS  PubMed  Google Scholar 

  51. Moradi F, Amiri H, Zad SS et al (2013) Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel 112:8–13

    Article  CAS  Google Scholar 

  52. Malik K, Tokkas J, Anand RC et al (2015) Pretreated rice straw as an improved fodder for ruminants—an overview. J Appl Nat Sci 7(1):514–520

    Article  Google Scholar 

  53. Mechmech F, Marinova M, Chadjaa H et al (2016) Co-fermentation of alfalfa juice and hardwood hydrolysate for butanol production in combined biorefinery systems. Ind Crop Prod 89:29–33

    Article  CAS  Google Scholar 

  54. Cao X, Chen Z, Liang L et al (2019) Covalorization of paper mill sludge and corn steep liquor for enhanced n-butanol production with Clostridium tyrobutyricum Δcat1::adhE2. Bioresour Technol 296:122347. https://doi.org/10.1016/j.biortech.2019.122347

    Article  CAS  PubMed  Google Scholar 

  55. Xue C, Zhao J, Liu F et al (2013) Two-stage in situ gas strip** for enhanced butanol fermentation and energy-saving product recovery. Bioresour Technol 135:396–402

    Article  CAS  PubMed  Google Scholar 

  56. Xue C, Du GQ, Sun JX et al (2014) Characterization of gas strip** and its integration with acetone–butanol–ethanol fermentation for high-efficient butanol production and recovery. Biochem Eng J 83:55–61

    Article  CAS  Google Scholar 

  57. Xue C, Liu F, Xu M et al (2016) Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. Bioresour Technol 219:158–168

    Article  CAS  PubMed  Google Scholar 

  58. Bonilla PJ, Wang Y (2017) In-situ biobutanol recovery from clostridial fermentations: a critical review. Crit Rev Biotechnol 38:469–482. https://doi.org/10.1080/07388551.2017.1376308

    Article  CAS  Google Scholar 

  59. Outram V, Lalander CA, Jonathan GM (2017) Applied in situ product recovery in ABE fermentation. Biotechnol Prog 33:563–579. https://doi.org/10.1002/btpr.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ha SH, Mai NL, Koo YM (2010) Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction. Process Biochem 45:1899–1903

    Article  CAS  Google Scholar 

  61. Kujawska A, Kujawski J, Bryjak M et al (2015) ABE fermentation products recovery methods—a review. Renew Sustain Energy Rev 48:648–661

    Article  CAS  Google Scholar 

  62. Sarabia CA, Revuelta DG, Fallanza M et al (2020) Polymer inclusion membranes containing ionic liquids for the recovery of n-butanol from ABE solutions by pervaporation. Sep Purif Technol 248:117101

    Article  CAS  Google Scholar 

  63. Wu H, Chen XP, Liu GP et al (2012) Acetone–butanol–ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess Biosyst Eng 35:1057–1065. https://doi.org/10.1007/s00449-012-0721-5

    Article  CAS  PubMed  Google Scholar 

  64. Abdehagh N, Tezel FH, Thibault J (2014) Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60:222–246

    Article  CAS  Google Scholar 

  65. Li H, Luo W, Gu Q et al (2013) Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction. Bioresour Technol 137:254–260)

    Article  CAS  PubMed  Google Scholar 

  66. Magalhães BL, Grassi MCB, Pereira GAG et al (2018) Improved n-butanol production from lignocellulosic hydrolysate by Clostridium strain screening and culture-medium optimization. Biomass Bioenergy 108:157–166

    Article  CAS  Google Scholar 

  67. Al-Shorgani NKN, Shukor H, Abdeshahian P et al (2015) Process optimization of butanol production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC13564) using palm oil mill effluent in acetone–butanol–ethanol fermentation. Biocatal Agricul Biotechnol 4:244–249. https://doi.org/10.1016/j.bcab.2015.02.004

    Article  Google Scholar 

  68. Comwien J, Boonvithaya N, Chulaluksananukul W et al (2015) Direct production of butanol and ethanol from cane sugar factory wastewater and cellulosic ethanol pilot plant wastewater by Clostridium beijerinckii CG1. Energy Procedia 79:556–561

    Article  CAS  Google Scholar 

  69. Zhang J, Jia B (2018) Enhanced butanol production using Clostridium beijerinckii SE-2 from the waste of corn processing. Biomass Bioenergy 115:260–266

    Article  CAS  Google Scholar 

  70. Sanguanchaipaiwong V, Leksawasdi N (2018) Butanol production by Clostridium beijerinckii from Pineapple waste juice. Energy Procedia 153:231–236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Iyyappan, J., Bharathiraja, B., Vaishnavi, A., Prathiba, S. (2021). Overview of Current Developments in Biobutanol Production Methods and Future Perspectives. In: Basu, C. (eds) Biofuels and Biodiesel. Methods in Molecular Biology, vol 2290. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1323-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1323-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1322-1

  • Online ISBN: 978-1-0716-1323-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation