Assigning Function to Phylogeny: FISH-nanoSIMS

  • Protocol
  • First Online:
Fluorescence In-Situ Hybridization (FISH) for Microbial Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

Abstract

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) is an imaging method used to identify microorganisms in environmental samples based on their phylogeny. CARD-FISH can be combined with nano-scale secondary ion mass spectrometry (nanoSIMS) to directly link the cell identity to their activity, measured as the incorporation of stable isotopes into hybridized cells after stable isotope probing. In environmental microbiology, a combination of these methods has been used to determine the identity and growth of uncultured microorganisms, and to explore the factors controlling their activity. Additionally, FISH-nanoSIMS has been widely used to directly visualize microbial interactions in situ. Here, we describe a step-by-step protocol for a combination of CARD-FISH, laser marking, and nanoSIMS analysis on samples from aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stoecker K, Dorninger C, Daims H et al (2010) Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol 76:922–926

    Google Scholar 

  2. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Google Scholar 

  3. Musat N, Stryhanyuk H, Bombach P et al (2014) The effect of FISH and CARD-FISH on the isotopic composition of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst Appl Microbiol 37:267–276

    Google Scholar 

  4. Woebken D, Burow LC, Behnam F et al (2015) Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME J 9:485–496

    Google Scholar 

  5. Musat N, Musat F, Weber PK et al (2016) Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol 41:114–121

    Article  CAS  Google Scholar 

  6. Pernthaler A, Pernthaler J, Amann R (2004) Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. In: Kowalchuk G, de Bruijn FJ, Head IM et al (eds) Molecular microbial ecology manual. Kluwer Academic, Dordrecht

    Google Scholar 

  7. Polerecky L, Adam B, Milucka J et al (2012) Look@NanoSIMS - a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol 14:1009–1023

    Article  CAS  Google Scholar 

  8. Greuter D, Loy A, Horn M et al (2016) ProbeBase-an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Res 44:D586–D589

    Article  CAS  Google Scholar 

  9. Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  10. Amann RI, Binder BJ, Olson RJ et al (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    Article  CAS  Google Scholar 

  11. Daims H, Brühl A, Amann R et al (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  Google Scholar 

  12. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Google Scholar 

  13. Sauder LA, Albertsen M, Engel K et al (2017) Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J 11:1142–1157

    Google Scholar 

  14. Woebken D, Fuchs BM, Kuypers MMM et al (2007) Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl Environ Microbiol 73:4648–4657

    Article  CAS  Google Scholar 

  15. Fuchs BM, Glöckner FO, Wulf J et al (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607

    Google Scholar 

  16. Musat N, Halm H, Winterholler B et al (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci U S A 105:17861–17866

    Article  CAS  Google Scholar 

  17. Li T, Di Wu T, Mazéas L et al (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10:580–588

    Article  CAS  Google Scholar 

  18. Behrens S, Lösekann T, Pett-Ridge J et al (2008) Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 74:3143–3150

    Google Scholar 

  19. Khachikyan A, Milucka J, Littmann S et al (2019) Direct cell mass measurements expand the role of small microorganisms in nature. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00493-19

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Milucka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kitzinger, K., Tienken, D., Littmann, S., Kidane, A.T., Kuypers, M.M.M., Milucka, J. (2021). Assigning Function to Phylogeny: FISH-nanoSIMS. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation