A Guide for Protein–Protein Docking Using SwarmDock

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2165))

  • 1718 Accesses

Abstract

Many of the biological functions of the cell are driven by protein–protein interactions. However, determining which proteins interact and exactly how they do so to enable their functions, remain major research questions. Functional interactions are dependent on a number of complicated factors; therefore, modeling the three-dimensional structure of protein–protein complexes is still considered a complex endeavor. Nevertheless, the rewards for modeling protein interactions to atomic level detail are substantial, and there are numerous examples of how models can provide useful information for drug design, protein engineering, systems biology, and understanding of the immune system. Here, we provide practical guidelines for docking proteins using the web-server, SwarmDock, a flexible protein–protein docking method. Moreover, we provide an overview of the factors that need to be considered when deciding whether docking is likely to be successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Garzon JI et al (2009) FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics 25(19):2544–2551

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Macindoe G, Mavridis L, Venkatraman V, Devignes M-D, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mashiach E et al (2010) An integrated suite of fast docking algorithms. Proteins 78(15):3197–3204

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang S-Y, Zou X (2010) MDockPP: a hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Proteins 78(15):3096–3103

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6(9):e24657

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29(13):1698–1699

    PubMed  Google Scholar 

  9. van Zundert GCP, Bonvin AMJJ (2014) Modeling protein-protein complexes using the HADDOCK webserver “modeling protein complexes with HADDOCK”. Methods Mol Biol 1137:163–179

    PubMed  Google Scholar 

  10. Viswanath S, Ravikant DVS, Elber R (2014) DOCK/PIERR: web server for structure prediction of protein-protein complexes. Methods Mol Biol 1137:199–207

    CAS  PubMed  Google Scholar 

  11. Esquivel-Rodriguez J, Filos-Gonzalez V, Li B, Kihara D (2014) Pairwise and multimeric protein-protein docking using the LZerD program suite. Methods Mol Biol 1137:209–234

    CAS  PubMed  Google Scholar 

  12. de Vries SJ, Schindler CEM, Chauvot de Beauchêne I, Zacharias M (2015) A web interface for easy flexible protein-protein docking with ATTRACT. Biophys J 108(3):462–465

    PubMed  PubMed Central  Google Scholar 

  13. Kozakov D et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee H, Seok C (2017) Template-based prediction of protein-peptide interactions by using GalaxyPepDock. Methods Mol Biol 1561:37–47

    CAS  PubMed  Google Scholar 

  15. Moal IH, Bates PA (2010) SwarmDock and the use of normal modes in protein-protein docking. Int J Mol Sci 11(10):3623–3648

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Moal IH, Bates PA (2010) Detection and refinement of encounter complexes for protein–protein docking: taking account of macromolecular crowding. Proteins 8(15):3189–3196

    Google Scholar 

  17. Torchala M, Moal IH, Chaleil RA, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29(6):807–809

    CAS  PubMed  Google Scholar 

  18. Torchala M, Bates PA (2014) Predicting the structure of protein-protein complexes using the SwarmDock web server. Methods Mol Biol 1137:181–197

    CAS  PubMed  Google Scholar 

  19. Vajda S, Hall DR, Kozakov D (2013) Sampling and scoring: a marriage made in heaven. Proteins 81(11):1874–1884

    CAS  PubMed  Google Scholar 

  20. Moal IH, Torchala M, Bates PA, Fernandez-Recio J (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 14:286

    PubMed  PubMed Central  Google Scholar 

  21. Barradas-Bautista D, Moal IH, Fernández-Recio J (2017) A systematic analysis of scoring functions in rigid-body protein docking: the delicate balance between the predictive rate improvement and the risk of overtraining. Proteins 85(7):1287–1297

    CAS  PubMed  Google Scholar 

  22. Hayes TW, Moal IH (2017) Modeling protein conformational transition pathways using collective motions and the LASSO method. J Chem Theory Comput 13(3):1401–1410

    CAS  PubMed  Google Scholar 

  23. Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56(1):93–101

    CAS  PubMed  Google Scholar 

  24. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE International Conference on Neural Networks, Perth

    Google Scholar 

  25. Solis FJ, Wets RJ-B (1981) Minimization by random search techniques. Math Oper Res 6(1):19–30

    Google Scholar 

  26. Tobi D (2010) Designing coarse grained-and atom based-potentials for protein-protein docking. BMC Struct Biol 10:40

    PubMed  PubMed Central  Google Scholar 

  27. Torchala M, Moal IH, Chaleil RA, Agius R, Bates PA (2013) A Markov-chain model description of binding funnels to enhance the ranking of docked solutions. Proteins 81(12):2143–2149

    CAS  PubMed  Google Scholar 

  28. Moal IH et al (2017) IRaPPA: information retrieval based integration of biophysical models for protein assembly selection. Bioinformatics 33(12):1806–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dobbins SE, Lesk VI, Sternberg MJE (2008) Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. Proc Natl Acad Sci U S A 105(30):10390–10395

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Karaca E, Bonvin AMJJ (2011) A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure 19(4):555–565

    CAS  PubMed  Google Scholar 

  31. Marsh JA, Teichmann SA (2011) Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure 19(6):859–867

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen H, Sun Y, Shen Y (2017) Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility. Proteins 85(3):544–556

    CAS  PubMed  Google Scholar 

  33. Wang Q, Canutescu AA, Dunbrack RL (2008) SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling. Nat Protoc 3(12):1832–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Soto CS, Fasnacht M, Zhu J, Forrest L, Honig B (2008) Loop modeling: sampling, filtering, and scoring. Proteins 70(3):834–843

    CAS  PubMed  Google Scholar 

  35. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Suhre K, Sanejouand Y-H (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Hoboken, NJ

    Google Scholar 

  38. Moal IH, Jimenez-Garcia B, Fernandez-Recio J (2015) CCharPPI web server: computational characterization of protein-protein interactions from structure. Bioinformatics 31(1):123–125

    CAS  PubMed  Google Scholar 

  39. Pfeiffenberger E, Chaleil RAG, Moal IH, Bates PA (2017) A machine learning approach for ranking clusters of docked protein-protein complexes by pairwise cluster comparison. Proteins 85(3):528–543

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van Zundert GCP et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725

    PubMed  Google Scholar 

  41. Svergun DI et al (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A 95(5):2267–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(6):768–773

    CAS  Google Scholar 

  43. Shvartsburg AA, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett 261(1–2):86–91

    CAS  Google Scholar 

  44. Lasker K, Sali A, Wolfson HJ (2010) Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Proteins 78(15):3205–3211

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Russel D et al (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Moal IH, Fernández-Recio J (2012) SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics 28(20):2600–2607

    CAS  PubMed  Google Scholar 

  47. Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11(8):801–807

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Andreani J, Faure G, Guerois R (2012) Versatility and invariance in the evolution of homologous heteromeric interfaces. PLoS Comput Biol 8(8):e1002677

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nadaradjane AA, Guerois R, Andreani J (2018) Protein-protein docking using evolutionary information. Methods Mol Biol 1764:429–447

    CAS  PubMed  Google Scholar 

  50. Reichmann D et al (2005) The modular architecture of protein-protein binding interfaces. Proc Natl Acad Sci U S A 102(1):57–62

    CAS  PubMed  Google Scholar 

  51. Jankauskaite J, Jimenez-Garcia B, Dapkunas J, Fernandez-Recio J, Moal IH (2019) SKEMPI 2.0: an updated benchmark of changes in protein-protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 35(3):462–469

    CAS  PubMed  Google Scholar 

  52. Melandri D et al (2018) The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol 19(12):1352–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Palakodeti A et al (2012) The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J Biol Chem 287(39):32780–32790

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Willcox BE, Willcox CR (2019) γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat Immunol 20(2):121–128

    CAS  PubMed  Google Scholar 

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Molecular Biology Laboratory [IHM], the Biotechnology and Biological Sciences Research Council [Future Leader Fellowship BB/N011600/1 to IHM], and the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001003), the UK Medical Research Council (FC001003), and the Wellcome Trust (FC001003) [R.A.G.C., M.T. and P.A.B.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moal, I.H., Chaleil, R.A.G., Torchala, M., Bates, P.A. (2020). A Guide for Protein–Protein Docking Using SwarmDock. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation