Genetics of Unstudied Thermophiles for Industry

  • Protocol
  • First Online:
Metabolic Pathway Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2096))

Abstract

Thermophilic organisms hold great potential for industry due to their numerous advantages in biotechnological applications such as higher reaction rate, higher substrate loading, decreased susceptibility to reaction contamination, energy savings in industrial fermentations, and ability to express thermostable proteins that can be utilized in many important industrial processes. Bioprospecting for thermophiles will continue to reveal new enzymatic and metabolic paradigms with industrial applicability. In order to translate these paradigms to production scale, routine methods for microbial genetic engineering are needed, yet remain to be developed in many newly isolated thermophiles. Major challenges and recent developments in the establishment of reliable genetic systems in thermophiles are discussed. Here, we use a hyperthermophilic, cellulolytic bacterium, Caldicellulosiruptor bescii, as a case study to demonstrate the development of a genetic system for an industrially useful thermophile, describing in detail methods for transformation, genetic tool utilization, and chromosomal modification using targeted gene deletion and insertion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schenk LK, Kelley JH (2010) Mothering an extremely low birth-weight infant: a phenomenological study. Adv Neonat Care 10:88–97

    Google Scholar 

  2. Taylor MP, van Zyl L, Tuffin IM, Leak DJ, Cowan DA (2011) Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts. Microb Biotechnol 4:438–448

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tamakoshi M, Oshima T (2011) Genetics of thermophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 547–566

    Google Scholar 

  4. Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13:213–231

    CAS  PubMed  Google Scholar 

  5. Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr, Scott RA, Adams MW, Westpheling J (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77:2232–2238

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanders ME, Nicholson MA (1987) A method for genetic transformation of nonprotoplasted Streptococcus lactis. Appl Environ Microbiol 53:1730–1736

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu LJ, Welker NE (1989) Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA. J Gen Microbiol 135:1315–1324

    CAS  PubMed  Google Scholar 

  9. Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao S, Mikkelsen MJ (2010) Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol 19:123–133

    CAS  PubMed  Google Scholar 

  12. Chung D, Cha M, Farkas J, Westpheling J (2013) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8:e62881

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Olson DG, Lynd LR (2012) Chapter seventeen - transformation of clostridium Thermocellum by electroporation. In: Harry JG (ed) Methods in enzymology. Academic Press, Cambridge, pp 317–330

    Google Scholar 

  14. Maezato Y, Johnson T, McCarthy S, Dana K, Blum P (2012) Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula. J Bacteriol 194:6856–6863

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guss AM, Olson DG, Caiazza NC, Lynd LR (2012) Dcm methylation is detrimental to plasmid transformation in clostridium thermocellum. Biotechnol Biofuels 5:30

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung D, Farkas J, Westpheling J (2013) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6:82

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Farkas J, Chung D, Debarry M, Adams MW, Westpheling J (2011) Defining components of the chromosomal origin of replication of the Hyperthermophilic Archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector. Appl Environ Microbiol 77:6343–6349

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsoi TV, Chuvil'skaia NA, Atakishieva I, Dzhavakhishvili T, Akimenko VK (1987) Clostridium thermocellum--a new object of genetic studies. Mol Gen Mikrobiol Virusol 11:18–23

    Google Scholar 

  20. Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148:163–167

    CAS  Google Scholar 

  21. Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    PubMed  PubMed Central  Google Scholar 

  22. Chung DH, Huddleston JR, Farkas J, Westpheling J (2011) Identification and characterization of CbeI, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes. J Ind Microbiol Biotechnol 38:1867–1877

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725. Appl Environ Microbiol 75:4762–4769

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J, Adams MW (2010) Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol 60:2011–2015

    PubMed  Google Scholar 

  25. Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL 2nd, Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MW (2011) Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res 39:3240–3254

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang SJ, Resch MG, Adams MW, Lunin VV, Himmel ME, Bomble YJ (2013) Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513–1516

    CAS  PubMed  Google Scholar 

  27. Clausen A, Mikkelsen MJ, Schroder I, Ahring BK (2004) Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum. Plasmid 52:131–138

    CAS  PubMed  Google Scholar 

  28. Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, Zavarzin GA (1990) Anaerocellum Thermophilum Gen. Nov Sp. Nov. an extremely thermophilic cellulolytic eubacterium isolated from hot-springs in the valley of geysers. Microbiology 59:598–604

    Google Scholar 

  29. Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J (2013) Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol 40:41–49

    CAS  PubMed  Google Scholar 

  30. Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME, Westpheling J (2015) Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. PLoS One 10:e0119508

    PubMed  PubMed Central  Google Scholar 

  31. Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J (2016) Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates. Biotechnol Biofuels 9:176

    PubMed  PubMed Central  Google Scholar 

  32. Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J (2017) In vivo synergistic activity of a CAZyme cassette from Acidothermus cellulolyticus significantly improves the cellulolytic activity of the C. bescii exoproteome. Biotechnol Bioeng 114(11):2474–2480

    CAS  PubMed  Google Scholar 

  33. Kim SK, Chung D, Himmel ME, Bomble YJ, Westpheling J (2017) Engineering the N-terminal end of CelA results in improved performance and growth of Caldicellulosiruptor bescii on crystalline cellulose. Biotechnol Bioeng 114:945–950

    CAS  PubMed  Google Scholar 

  34. Chung D, Pattathil S, Biswal AK, Hahn MG, Mohnen D, Westpheling J (2014) Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance. Biotechnol Biofuels 7:147

    PubMed  PubMed Central  Google Scholar 

  35. Young J, Chung D, Bomble YJ, Himmel ME, Westpheling J (2014) Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass. Biotechnol Biofuels 7:142

    PubMed  PubMed Central  Google Scholar 

  36. Cha M, Wang H, Chung D, Bennetzen JL, Westpheling J (2013) Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol 40:1443–1448

    CAS  PubMed  Google Scholar 

  37. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. Nov., sp. nov. Arch Microbiol 129:395–400

    CAS  PubMed  Google Scholar 

  38. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

  39. Adams MW, Holden JF, Menon AL, Schut GJ, Grunden AM, Hou C, Hutchins AM, Jenney FE Jr, Kim C, Ma K, Pan G, Roy R, Sapra R, Story SV, Verhagen MF (2001) Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:716–724

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chung D, Farkas J, Huddleston JR, Olivar E, Westpheling J (2012) Methylation by a unique alpha-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725. PLoS One 7:e43844

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A 111:8931–8936

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chung D, Cha M, Snyder EN, Elkins JG, Guss AM, Westpheling J (2015) Cellulosic ethanol production via consolidated bioprocessing at 75 degrees C by engineered Caldicellulosiruptor bescii. Biotechnol Biofuels 8:163

    PubMed  PubMed Central  Google Scholar 

  43. Chung D, Cha M, Young J, and Westpheling J (2014) Heterologous expression of extracellular Acidothermus cellulolyticus endoglucanase E1 in Caldicellulosiruptor bescii. In preparation

    Google Scholar 

  44. Cha M, Chung D, Westpheling J (2016) Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism. Appl Microbiol Biotechnol 100:1823–1831

    CAS  PubMed  Google Scholar 

  45. Cha M, Chung D, Elkins J, Guss A, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6:85

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Gina L. Lipscomb for sharing C. bescii transformation protocols. Funding was provided by the BioEnergy Science Center (BESC) and the Center for Bioenergy Innovation (CBI), from the U.S. Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was authored in part by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehwan Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chung, D., Sarai, N.S., Himmel, M.E., Bomble, Y.J. (2020). Genetics of Unstudied Thermophiles for Industry. In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering. Methods in Molecular Biology, vol 2096. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0195-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0195-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0194-5

  • Online ISBN: 978-1-0716-0195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation