Thermodynamic Approaches in Flux Analysis

  • Protocol
  • First Online:
Metabolic Flux Analysis in Eukaryotic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2088))

Abstract

Networks of reactions inside the cell are constrained by the laws of mass and energy balance. Constrained-based modelling (CBM) is the most used method to describe the mass balance of metabolic network. The main key concepts in CBM are stoichiometric analysis such as elementary flux mode analysis or flux balance analysis. Some of these methods have focused on adding thermodynamics constraints to eliminate non-physical fluxes or inconsistencies in the metabolic system. Here, we review the main different approaches and how they tackle the different class of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ataman M, Hatzimanikatis V (2015) Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr Opin Biotechnol 36:176–182

    Article  CAS  Google Scholar 

  2. Dinh M, Fromion V (2017) RBA like problem with thermo-kinetics is non convex. ar**v:1706.01312

    Google Scholar 

  3. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2(2):165–182

    Article  Google Scholar 

  4. Varma A, Palsson B (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998

    Article  CAS  Google Scholar 

  5. Atkins P, de Paula J (2014) Physical chemistry, 10th edn. Freeman, New York

    Google Scholar 

  6. Goldberg RN, Bhat TN, Tewari YB (2004) Thermodynamics of enzyme-catalyzed reactions – a database for quantitative biochemistry. Bioinformatics 20:2874–2877

    Article  CAS  Google Scholar 

  7. Wang P, Neumann DB (1989) A database and retrieval system for the NBS tables of chemical thermodynamic properties. J Chem Inf Comput Sci 29(1):31–38

    Article  CAS  Google Scholar 

  8. Flamholz A, Noor E, Bar-Even A, Milo R (2012) eQuilibrator – the biochemical thermodynamics calculator. Nucleic Acids Res 40:D770–D775

    Article  CAS  Google Scholar 

  9. Jankowski M, Henry C, Broadbelt L, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95(3):1487–1499

    Article  CAS  Google Scholar 

  10. Mavrovouniotis M (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36(10):1070–1082

    Article  CAS  Google Scholar 

  11. Beard D, Liang S, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83:79–86

    Article  CAS  Google Scholar 

  12. Henry C, Broadbelt L, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  CAS  Google Scholar 

  13. Müller S, Regensburger G, Steuer R (2014) Enzyme allocation problems in kinetic metabolic networks: Optimal solutions are elementary flux modes. J Theor Biol 347:182–190

    Article  Google Scholar 

  14. Wortel MT, Peters H, Hulshof J, Teusink B, Bruggeman FJ (2014) Metabolic states with maximal specific rate carry flux through an elementary flux mode. FEBS J 281:1547–1555

    Article  CAS  Google Scholar 

  15. Gerstl M, Jungreuthmayer C, Zanghellini J (2015) TEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks. Bioinformatics 31:2232–2234

    Article  CAS  Google Scholar 

  16. Peres S, Jolicoeur M, Moulin C, Dague P, Schuster S (2017) How important is thermodynamics for identifying elementary flux modes? PLoS One 12(2):e0171440

    Article  Google Scholar 

  17. Wortel M, Noor E, Ferris M, Bruggeman F, Liebermeister W (2018) Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLOS Comput Biol 14:1–21

    Article  Google Scholar 

  18. Gerstl M, Ruckerbauer D, Mattanovich D, Jungreuthmayer C, Zanghellini J (2015) Metabolomics integrated elementary flux mode analysis in large metabolic networks. Sci Rep 5:8930

    Article  CAS  Google Scholar 

  19. Gerstl M, Jungreuthmayer C, Muller S, Zanghellini J (2016) Which sets of elementary flux modes form thermodynamically feasible flux distributions? FEBS J 283:782–1794

    Article  Google Scholar 

  20. Terzer, M Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19):2229–2235

    Article  CAS  Google Scholar 

  21. Schuster S, Heinrich R (1991) Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. J Math Biol 29:425–442

    Article  Google Scholar 

  22. Beard D, Babson E, Curtis E, Qian H (2004) Thermodynamic constraints for biochemical networks. J Theor Biol 228(3):327–333

    Article  CAS  Google Scholar 

  23. Kümmel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinf 7:512

    Article  Google Scholar 

  24. Zamboni N, Kümmel A, Heinemann M (2008) anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinf 9:199

    Google Scholar 

  25. Jol SJ, Kümmel A, Terzer M, Stelling J, Heinemann M (2012) System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol 8(3):e1002415

    Article  CAS  Google Scholar 

  26. Vielma J (2015) Mixed integer linear programming formulation techniques. SIAM Rev 57(1):3–57

    Article  Google Scholar 

  27. Salvy P, Fengos G, Ataman M, Pathier T, Soh K, Hatzimanikatis V (2018) pyTFA and matTFA: a Python package and a Matlab toolbox for thermodynamics-based flux analysis. Bioinformatics 35:167–169

    PubMed Central  Google Scholar 

  28. Motzkin T, Raiffa H, Thompson GL, Thrall RM (1953) The double description method. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II. Princeton University Press, Princeton

    Google Scholar 

  29. Muller A, Bockmayr A (2014) Flux modules in metabolic networks. J Math Biol 69:1151–1179

    Article  Google Scholar 

  30. Gerstl M, Zanghellini J, Müller S, Regensburger G (2018) Flux tope analysis: studying the coordination of reaction directions in metabolic networks. Bioinformatics 35:266–273

    Article  Google Scholar 

  31. Peres S, Schuster S, Dague P (2018) Thermodynamic constraints for identifying the elementary flux modes. Biochem Soc Trans 46(3):641–647. https://doi.org/10.1042/BST20170260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Peres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peres, S., Fromion, V. (2020). Thermodynamic Approaches in Flux Analysis. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation