Embryonic Spinal Cord Innervation in Human Trunk Organogenesis Gastruloids: Cardiac Versus Enteric Customization and Beyond

  • Protocol
  • First Online:
Embryo Models In Vitro

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2767))

  • 404 Accesses

Abstract

Trunk-biased human gastruloids provide the ability to couple developmentally relevant spinal neurogenesis and organ morphogenesis via spatiotemporal self-organization events from derivatives of the three germ layers. The multi-lineage nature of gastruloids provides the full complexity of regulatory signaling cues that surpasses directed organoids and lays the foundation for an ex vivo self-evolving system. Here we detail two distinct protocols for trunk-biased gastruloids from an elongated, polarized structure with coordinated organ-specific neural patterning. Following an induction phase to caudalize iPSCs to trunk phenotype, divergent features of organogenesis and end-organ innervation yield separate models of enteric and cardiac nervous system formation. Both protocols are permissive to multi-lineage development and allow the study of neural integration events within a native, embryo-like context. We discuss the customizability of human gastruloids and the optimization of initial and extended conditions that maintain a permissive environment for multi-lineage differentiation and integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shao Y, Fu J (2022) Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell Stem Cell 29:722–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shi Y, Wu Q, Wang X (2021) Modeling brain development and diseases with human cerebral organoids. Curr Opin Neurobiol 66:103–115

    Article  CAS  PubMed  Google Scholar 

  3. Olmsted ZT, Paluh JL (2021a) Stem cell neurodevelopmental solutions for restorative treatments of the human trunk and spine. Front Cell Neurosci 15:667590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olmsted ZT, Paluh JL (2021b) Co-development of central and peripheral neurons with trunk mesendoderm in human elongating multi-lineage organized gastruloids. Nat Commun 12:3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olmsted ZT, Paluh JL (2022a) A combined human gastruloid model of cardiogenesis and neurogenesis. iScience 25:104486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Faustino Martins JM, Fischer C, Urzi A et al (2020) Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell 26:172–186

    Article  CAS  PubMed  Google Scholar 

  7. Anderson C, Khan MAF, Wong F et al (2016) A strategy to discover new organizers identifies a putative heart organizer. Nat Commun 7:12656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olmsted ZT, Paredes-Espinosa MB, Paluh JL (2022b) Generation of human elongating multi-lineage organized cardiac gastruloids. STAR Protoc 3:101898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rossi G, Broguiere N, Miyamoto M et al (2021) Capturing cardiogenesis in gastruloids. Cell Stem Cell 28:230–240

    Article  CAS  PubMed  Google Scholar 

  10. Olmsted ZT, Paluh JL (2021c) Generation of human elongating multi-lineage organized (EMLO) gastruloids. Research Square. https://doi.org/10.21203/rs.3.pex-1441/v1

  11. Chang EA, Tomov ML, Suhr ST et al (2015) Derivation of ethnically diverse human induced pluripotent stem cell lines. Sci Rep 5:15234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomov ML, Olmsted ZT, Dogan H et al (2016) Distinct and shared determinants of cardiomyocyte contractility in multi-lineage competent ethnically diverse human iPSCs. Sci Rep 6:37637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adam M, Potter AS, Potter SS (2017) Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144:3625–3632

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gouti M, Tsakiridis A, Wymeersch FJ et al (2014) In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signaling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12:e1001937

    Article  PubMed  PubMed Central  Google Scholar 

  15. Olmsted ZT, Stigliano C, Badri A et al (2020) Fabrication of homotypic neural ribbons as a multiplex platform optimized for spinal cord delivery. Sci Rep 10:12939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Silva AC, Matthys OB, Joy DA et al (2021) Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 28:2137–2152

    Article  CAS  PubMed  Google Scholar 

  17. Drakhlis L, Biswanath S, Farr C-M et al (2021) Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 39:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hofbauer P, Jahnel SM, Papai N et al (2021) Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184:3299–3317

    Article  CAS  PubMed  Google Scholar 

  19. George RM, Maldonado-Velez G, Firulli AB (2020) The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 147:dev188706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajendran PS, Challis RC, Fowlkes CC et al (2019) Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun 10:1944

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fedele L, Brand T (2020) The intrinsic cardiac nervous system and its role in cardiac pacemaking and conduction. J Cardiovasc Dev Dis 7:54

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rossi G, Giger S, Hubscher T, Lutolf MP (2022) Gastruloids as in vitro models of embryonic blood development with spatial and temporal resolution. Sci Rep 12:13380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ragusa D, Suen C-W, Cortes GT et al (2022) Dissecting infant leukemia developmental origins with a hemogenic gastruloid model. bioRxiv. https://doi.org/10.1101/2022.10.07.511362

  24. Veenvliet JV, Bolondi A, Kretzmer H et al (2020) Mouse embryonic stem cells self-organize intro trunk-like structures with neural tube and somites. Science 370:eaba4937

    Article  CAS  PubMed  Google Scholar 

  25. Girgin MU, Broguiere N, Mattolini L, Lutolf MP (2021) Gastruloids generated without exogenous Wnt activation develop anterior neural tissues. Stem Cell Rep 16:1–13

    Article  Google Scholar 

  26. Vianello S, Lutolf MP (2021) In vitro endoderm emergence and self-organisation in the absence of extraembryonic tissues and embryonic architecture. bioRxiv. https://doi.org/10.1101/2020.06.07.138883

  27. Farag N, Schiff C, Nachman I (2023) Coordination between endoderm progression and gastruloid elongation controls endodermal morphotype choice. bioRxiv. https://doi.org/10.1101/2023.02.07.527329

Download references

Acknowledgments

This work was supported by multiple New York state awards. EMLO work was funded by the NY State Department of Health (NYS DOH) Spinal Cord Injury Research Board (NYSCIRB), Projects to Accelerate Research Translation (PART) award C33278GG and SUNY Polytechnic SEED award 917035-21 and used published lines developed through previous New York State stem cell research (NYSTEM) funding. The EMLOC research was supported by SUNY Polytechnic SEED award 917035 and CATN2 award 1180838-1-92476. The scRNAseq was performed at the SUNY Buffalo Genomics and Bioinformatics Core.

Conflicts of Interest

The authors declare the following potential conflict of interest on patent pending EMLOC technology: 63/311,498, “A combined human gastruloid model for cardiogenesis and neurogenesis.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Olmsted, Z.T., Paredes-Espinosa, M.B., Paluh, J.L. (2023). Embryonic Spinal Cord Innervation in Human Trunk Organogenesis Gastruloids: Cardiac Versus Enteric Customization and Beyond. In: Zernicka-Goetz, M., Turksen, K. (eds) Embryo Models In Vitro. Methods in Molecular Biology, vol 2767. Humana, New York, NY. https://doi.org/10.1007/7651_2023_491

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_491

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3685-5

  • Online ISBN: 978-1-0716-3686-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation