Background

Pancreatic cancer is a fatal malignancy with a poor prognosis worldwide [1]. Due to occult onset and non-specific symptoms, 80% of patients diagnosed with pancreatic cancer are in advanced stages and have a 5-year survival rate of less than 5% [2, 3]. Despite ongoing advances for the survival rates noted in many cancers, such as colon cancer and breast cancer, the annual mortality rates for patients with pancreatic cancer remain almost equal to the incidence rates [3, 4]. Thus, to improve the health outcomes of pancreatic cancer patients, more intensive efforts should be made to understand the molecular mechanisms underlying pancreatic cancer progression.

Anillin (ANLN), an actin binding protein, first identified in Drosophila, is located on chromosome 7p14.2 and encodes an actin-binding protein that consists of 1125 amino acids and plays an important role in cytokinesis [5,6,7]. In normal tissues, ANLN expression is higher in the placenta, brain and testis, and lower in the lung, heart, liver and spleen [8]. Many recent studies suggests that ANLN is upregulated in numerous cancer types, including cervical cancer, prostate cancer, anaplastic thyroid carcinoma, breast cancer, lung carcinogenesis, bladder urothelial carcinoma, pancreatic cancer and nasopharyngeal carcinoma [9,10,11,12,13,14,

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its additional files.

Abbreviations

ANLN:

Anillin actin binding protein

CCK-8:

Cell counting kit-8

EZH2:

Enhancer of zeste homolog 2

GO:

Gene ontology

IHC:

Immunohistochemistry

LASP1:

LIM and SH3 protein 1

MOI:

Multiplicity of infection

OS:

Overall survival

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

UTR:

Untranslated region

References

  1. Lin QJ, Yang F, ** C, Fu DL. Current status and progress of pancreatic cancer in China. World J Gastroenterol. 2015;21(26):7988–8003.

    Article  Google Scholar 

  2. Li XD, Gao PJ, Wang Y, Wang XC. Blood-derived microRNAs for pancreatic cancer diagnosis: a narrative review and meta-analysis. Front Physiol. 2018;9:685.

    Article  Google Scholar 

  3. Rossi ML, Rehman AA, Gondi CS. Therapeutic options for the management of pancreatic cancer. World J Gastroenterol. 2014;20(32):11142–59.

    Article  Google Scholar 

  4. Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: what is the way forward? World J Gastroenterol. 2018;24(29):3222–38.

    Article  CAS  Google Scholar 

  5. Field CM, Alberts BM. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol. 1995;131(1):165–78.

    Article  CAS  Google Scholar 

  6. Hickson GR, O'Farrell PH. Anillin: a pivotal organizer of the cytokinetic machinery. Biochem Soc Trans. 2008;36:439–41.

    Article  CAS  Google Scholar 

  7. Piekny AJ, Maddox AS. The myriad roles of Anillin during cytokinesis. Semin Cell Dev Biol. 2010;21(9):881–91.

    Article  CAS  Google Scholar 

  8. Oegema K, Savoian MS, Mitchison TJ, Field CM. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol. 2000;150(3):539–52.

    Article  CAS  Google Scholar 

  9. Long XY, Zhou W, Wang YX, Liu SQ. Prognostic significance of ANLN in lung adenocarcinoma. Oncol Lett. 2018;16(2):1835–40.

    PubMed  PubMed Central  Google Scholar 

  10. Olakowski M, Tyszkiewicz T, Jarzab M, Król R, Oczko-Wojciechowska M, Kowalska M, Kowal M, Gala GM, Kajor M, Lange D, et al. NBL1 and anillin (ANLN) genes over-expression in pancreatic carcinoma. Folia Histochem Cytobiol. 2009;47(2):249–55.

    Article  Google Scholar 

  11. Sadi AM, Wang DY, Youngson BJ, Miller N, Boerner S, Done SJ, Leong WL. Clinical relevance of DNA microarray analyses using archival formalin-fixed paraffin-embedded breast cancer specimens. BMC Cancer. 2011;11:1–13.

    Article  Google Scholar 

  12. Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W, Yoshioka H, Daigo Y, Nasu Y, Kumon H, et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 2007;67(11):5117–25.

    Article  CAS  Google Scholar 

  13. Wang SM, Mo YX, Midorikawa K, Zhang Z, Huang GW, Ma N, Zhao WL, Hiraku Y, Oikawa S, Murata M. The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L. Oncotarget. 2015;6(34):35893–907.

    PubMed  PubMed Central  Google Scholar 

  14. Weinberger P, Ponny SR, Xu HY, Bai S, Smallridge R, Copland J, Sharma A. Cell cycle M-phase genes are highly upregulated in anaplastic thyroid carcinoma. Thyroid. 2017;27(2):236–52.

    Article  CAS  Google Scholar 

  15. **a LL, Su XL, Shen JZ, Meng Q, Yan JQ, Zhang CH, Chen Y, Wang H, Xu MJ. ANLN functions as a key candidate gene in cervical cancer as determined by integrated bioinformatic analysis. Cancer Manag Res. 2018;10:663–70.

    Article  CAS  Google Scholar 

  16. Zeng SX, Yu XW, Ma C, Song RX, Zhang ZS, Zi X, Chen X, Wang Y, Yu YW, Zhao JJ, et al. Transcriptome sequencing identifies ANLN as a promising prognostic biomarker in bladder urothelial carcinoma. Sci Rep. 2017;7(1):3151.

    Article  Google Scholar 

  17. Suzuki C, Daigo Y, Ishikawa N, Kato T, Hayama S, Ito T, Tsuchiya E, Nakamura Y. ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 2005;65(24):11314–25.

    Article  CAS  Google Scholar 

  18. Idichi T, Seki N, Kurahara H, Yonemori K, Osako Y, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, et al. Regulation of actin-binding protein ANLN by antitumor miR-217 inhibits cancer cell aggressiveness in pancreatic ductal adenocarcinoma. Oncotarget. 2017;8(32):53180–93.

    Article  Google Scholar 

  19. Tomasetto C, Régnier C, Moog-Lutz C, Mattei MG, Chenard MP, Lidereau R, Basset P, Rio MC. Identifcation of four novel human genes amplifed and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17. Genomics. 1995;28:367–76.

    Article  CAS  Google Scholar 

  20. Zhou R, Shao ZY, Liu J, Zhan WQ, Gao QZ, Pan ZH, Wu L, Xu LJ, Ding YQ, Zhao L. COPS5 and LASP1 synergistically interact to downregulate 14-3-3σ expression and promote colorectal cancer progression via activating PI3K/AKT pathway. Int J Cancer. 2018;142(9):1853–64.

    Article  CAS  Google Scholar 

  21. Endres M, Kneitz S, Orth MF, Perera RK, Zernecke A, Butt E. Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1). Oncotarget. 2016;7:64244–59.

    Article  Google Scholar 

  22. Zhong CH, Chen YT, Tao B, Peng LL, Peng TM, Yang XB, **a XG, Chen LG. LIM and SH3 protein 1 regulates cell growth and chemosensitivity of human glioblastoma via the PI3K/AKT pathway. BMC Cancer. 2018;18(1):722.

    Article  Google Scholar 

  23. Zhao L, Wang H, Liu C, Liu YW, Wang XY, Wang S, Sun XG, Li JM, Deng YJ, Jiang Y, Ding YQ. Promotion of colorectal cancer growth and metastasis by the LIM and SH3 domain protein 1. Gut. 2010;59:1226–35.

    Article  CAS  Google Scholar 

  24. Zhao TS, Ren H, Li J, Chen J, Zhang H, **n W, Sun Y, Sun L, Yang YW, Sun JW, et al. LASP1 is a HIF1α target gene critical for metastasis of pancreatic cancer. Cancer Res. 2015;75(1):111–9.

    Article  CAS  Google Scholar 

  25. Vorvis C, Koutsioumpa M, Iliopoulos D. Developments in miRNA gene signaling pathways in pancreatic cancer. Future Oncol. 2016;12(9):1135–50.

    Article  CAS  Google Scholar 

  26. Liu M, Yin K, Guo X, Feng H, Yuan M, Liu Y, Zhang J, Guo B, Wang C, Zhou G, et al. Diphthamide biosynthesis 1 is a novel oncogene in colorectal Cancer cells and is regulated by MiR-218-5p. Cell Physiol Biochem. 2017;44(2):505–14.

    Article  Google Scholar 

  27. Xu YS, He Q, Lu YY, Tao FX, Zhao L, Ou RY. MicroRNA-218-5p inhibits cell growth and metastasis in cervical cancer via LYN/NF-κB signaling pathway. Cancer Cell Int. 2018;18:198.

    Article  CAS  Google Scholar 

  28. Deng M, Zeng C, Lu XH, He XS, Zhang RX, Qiu QW, Zheng GP, Jia XT, Liu H, He ZM. miR-218 suppresses gastric cancer cell cycle progression through the CDK6/cyclin D1/E2F1 axis in a feedback loop. Cancer Lett. 2017;403:175–85.

    Article  CAS  Google Scholar 

  29. Li BS, Liu H, Yang WL. Reduced miRNA-218 expression in pancreatic cancer patients as a predictor of poor prognosis. Genet Mol Res. 2015;14(4):16372–8.

    Article  CAS  Google Scholar 

  30. Liu Z, Xu Y, Long J, Guo K, Ge C, Du R. microRNA-218 suppresses the proliferation, invasion and promotes apoptosis of pancreatic cancer cells by targeting HMGB1. Chin J Cancer Res. 2015;27(3):247–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang LL, Wang L, Wang XY, Shang D, Yin SJ, Sun LL, Ji HB. MicroRNA-218 inhibits the proliferation, migration, and invasion and promotes apoptosis of gastric cancer cells by targeting LASP1. Tumour Biol. 2016;37(11):15241–52.

    Article  CAS  Google Scholar 

  32. Nishikawa R, Goto Y, Sakamoto S, Chiyomaru T, Enokida H, Kojima S, Kinoshita T, Yamamoto N, Nakagawa M, Naya Y, et al. Tumor-suppressive microRNA-218 inhibits cancer cell migration and invasion via targeting of LASP1 in prostate cancer. Cancer Sci. 2014;105(7):802–11.

    Article  CAS  Google Scholar 

  33. Shahabipour F, Caraglia M, Majeed M, Derosa G, Maffioli P, Sahebkar A. Naturally occurring anti-cancer agents targeting EZH2. Cancer Lett. 2017;400:325–35.

    Article  CAS  Google Scholar 

  34. Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol. 2017;29(5):375–81.

    Article  CAS  Google Scholar 

  35. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, **g X, Cao X, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell. 2011;20:187–99.

    Article  CAS  Google Scholar 

  36. Ma J, Zhang J, Weng YC, Wang JC. EZH2-mediated microRNA-139-5p regulates epithelial-mesenchymal transition and lymph node metastasis of pancreatic Cancer. Mol Cells. 2018;41(9):868–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li CH, To KF, Tong JH, **ao Z, **a T, Lai PB, Chow SC, Zhu YX, Chan SL, Marquez VE, et al. Enhancer of zeste homolog 2 silences microRNA-218 in human pancreatic ductaladenocarcinoma cells by inducing formation of heterochromatin. Gastroenterology. 2013;144(5):1086–97.

    Article  CAS  Google Scholar 

  38. Kang W, Tong JH, Chan AW, Lee TL, Lung RW, Leung PP, So KK, Wu K, Fan D, Yu J, et al. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res. 2011;17(8):2130–9.

    Article  CAS  Google Scholar 

  39. Shin G, Kang TW, Yang S, Baek SJ, Jeong YS, Kim SY. GENT: gene expression database of normal and tumor tissues. Cancer Inform. 2011;10:149–57.

    Article  CAS  Google Scholar 

  40. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  Google Scholar 

  41. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

    Article  Google Scholar 

  42. Brady-Kalnay SM. Molecular mechanisms of cancer cell-cell interactions: cell-cell adhesion-dependent signaling in the tumor microenvironment. Cell Adhes Migr. 2012;6(4):344–5.

    Article  Google Scholar 

  43. Hale JS, Li M, Lathia JD. The malignant social network: cell-cell adhesion and communication in cancer stem cells. Cell Adhes Migr. 2012;6(4):346–55.

    Article  Google Scholar 

  44. Taniuchi K, Furihata M, Iwasaki S, Tanaka K, Shimizu T, Saito M, Saibara T. RUVBL1 directly binds actin filaments and induces formation of cell protrusions to promote pancreatic cancer cell invasion. Int J Oncol. 2014;44(6):1945–54.

    Article  CAS  Google Scholar 

  45. Lian Y, **ong F, Yang LT, Bo H, Gong ZJ, Wang YM, Wei F, Tang YY, Li XY, Liao QJ, et al. Long noncoding RNA AFAP1-AS1 acts AS a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the rho/Rac pathway. J Exp Clin Cancer Res. 2018;37(1):253.

    Article  CAS  Google Scholar 

  46. Zhang HR, Lai SY, Huang LJ, Zhang ZF, Liu J, Zheng SR, Ding K, Bai X, Zhou JY. Myosin 1b promotes cell proliferation, migration, and invasion in cervical cancer. Gynecol Oncol. 2018;149(1):188–97.

    Article  CAS  Google Scholar 

  47. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  Google Scholar 

  48. Vaughan L, Tan CT, Chapman A, Nonaka D, Mack NA, Smith D, Booton R, Hurlstone AF, Malliri A. HUWE1 ubiquitylates and degrades the RAC activator TIAM1 promoting cell-cell adhesion disassembly, migration, and invasion. Cell Rep. 2015;10(1):88–102.

    Article  CAS  Google Scholar 

  49. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Crit Rev Clin Lab Sci. 2002;39(6):527–79.

    Article  CAS  Google Scholar 

  50. Ozen M, Karatas OF, Gulluoglu S, Bayrak OF, Sevli S, Guzel E, Ekici ID, Caskurlu T, Solak M, Creighton CJ, et al. Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Cancer Investig. 2015;33(6):251–8.

    Article  CAS  Google Scholar 

  51. Wang J, Wang B, Ren HQ, Chen W. miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun. 2019;509(1):241–8.

    Article  CAS  Google Scholar 

  52. Fang M, Du HC, Han B, **a GY, Shi XL, Zhang F, Fu QQ, Zhang T. Hypoxia-inducible microRNA-218 inhibits trophoblast invasion by targeting LASP1: implications for preeclampsia development. Int J Biochem Cell Biol. 2017;87:95–103.

    Article  CAS  Google Scholar 

  53. Wang BR, Liu Y, Luo F, Xu Y, Qin Y, Lu XL, Xu WC, Shi L, Liu QZ, **ang QY. Epigenetic silencing of microRNA-218 via EZH2-mediated H3K27 trimethylation is involved in malignant transformation of HBE cells induced by cigarette smoke extract. Arch Toxicol. 2016;90(2):449–61.

    Article  CAS  Google Scholar 

  54. Zhang XP, Liu Y, Fan CF, Wang L, Li AL, Zhou HJ, Cai L, Miao Y, Li QC, Qiu XS, et al. Lasp1 promotes malignant phenotype of non-small-cell lung cancer via inducing phosphorylation of FAK-AKT pathway. Oncotarget. 2017;8(43):75102–13.

    PubMed  PubMed Central  Google Scholar 

  55. Gao QZ, Tang LH, Wu L, Li KT, Wang H, Li WD, Wu J, Li MY, Wang S, Zhao L. LASP1 promotes nasopharyngeal carcinoma progression through negatively regulation of the tumor suppressor PTEN. Cell Death Dis. 2018;9(3):393.

    Article  Google Scholar 

  56. Ebrahimi S, Hosseini M, Shahidsales S, Maftouh M, Ferns GA, Ghayour-Mobarhan M, Hassanian SM, Avan A. Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic Cancer. Curr Med Chem. 2017;24(13):1321–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the National Natural Science Foundation of China (no. 81472288 and no. 81472775).

Author information

Authors and Affiliations

Authors

Contributions

ABW, HSD, WL and PB designed the experiments; ABW and HSD performed the experiments and analyzed the data; YG, CCZ, JJS, YDL and YJ collected and analyzed the clinical samples; ABW and HSD drafted the manuscript; WL and PB reviewed the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Liu or ** Bie.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Ethical Committee of Army Medical University, China. All patients provided written informed consent to participate in the study.

Consent for publication

The authors declare that they agree to submit the article for publication.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Additional files

Additional file 1:

Table S1. siRNAs, shRNA and primers. (DOCX 20 kb)

Additional file 2:

Table S2. GO terms representing biological process. (DOCX 17 kb)

Additional file 3:

Table S3. GO terms representing molecular function. (DOCX 17 kb)

Additional file 4:

Table S4. GO terms representing cellular compartment. (DOCX 19 kb)

Additional file 5:

Figure S1. ANLN knockdown inhibited BxPC-3 cell proliferation by mediating LASP1. (A) Based on the GENT database, LASP1, RAB11B, RUVBL1 and MYO1B gene expression were analyzed in the pancreatic cancer tissues and normal pancreatic tissues. (B) There were significant Pearson correlations of ANLN with LASP1 and ANLN with RUVBL1 in the pancreatic cancer tissues and the normal pancreatic tissues. (C) CCK-8 assay showed that LASP1 restoration partially reversed the effects of ANLN knockdown on pancreatic cancer cell proliferation, while RUVBL1 restoration did not reverse the effect of ANLN downregulation on pancreatic cancer cell proliferation. **P < 0.01. (JPG 1806 kb)

Additional file 6:

Figure S2. MiR-218-5p upregulation significantly repressed the expression of LASP1 mRNA in BxPC-3. (A) The heat map of the differentially expressed miRNA precursors with a fold change of greater than 2 or less than − 2 in ANLN RNAi relative to NC. (B) The selected candidate miRNAs (miR-145-5p, miR-218-5p and miR-9-5p) were confirmed by qRT-PCR after ANLN RNAi transfection in BxPC-3 cells. (C) The expression levels of miR-145-5p, miR-218-5p and miR-9-5p were detected by qRT-PCR in BxPC-3 cells transfected with the miR-145-5p mimic (miR-145-5p), miR-218-5p mimic (miR-218-5p), miR-9-5p mimic (miR-9-5p) or mimic control (con). U6 was used as a loading control. (D) The expression levels of LASP1 mRNA in BxPC-3 cells transfected with the miR-145-5p mimic (miR-145-5p), miR-218-5p mimic (miR-218-5p), miR-9-5p mimic (miR-9-5p) or mimic control (con) were analyzed by qRT-PCR. **P < 0.01. (JPG 1590 kb)

Additional file 7:

Figure S3. ANLN depletion significantly repressed the expression of EZH2 mRNA and protein in BxPC-3 and SW1990 cells. (A) The heat map of the selected genes. (B and C) The expression of EZH2 mRNA and protein was determined by qRT-PCR and Western blot in BxPC-3 and SW1990 cells transfected with the ANLN siRNA (ANLN RNAi) or the scramble control (NC). (JPG 512 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Dai, H., Gong, Y. et al. ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis. J Exp Clin Cancer Res 38, 347 (2019). https://doi.org/10.1186/s13046-019-1340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13046-019-1340-7

Keywords