Introduction

Mesenchymal progenitor cells, also referred to as mesenchymal stem cells (MSCs), provide an attractive alternative to chondrocytes with regard to cell-based approaches to cartilage repair [1]. With the use of the proper three-dimensional serum-free culture conditions, expanded MSCs can be stimulated to differentiate along the chondrogenic pathway when the appropriate factors, such as certain members of the transforming growth factor (TGF)-β superfamily, are present [24]. This research has led to the first clinical application of autologous bone marrow stromal cells for the repair of full-thickness articular cartilage defects in humans [5, 6]. However, to date, the delivery of MSCs into cartilaginous lesions has neither clinically nor experimentally resulted in sustained regeneration of hyaline cartilage in vivo [7]. Inadequate delivery of the soluble factors necessary to drive the chondrogenic differentiation of the transplanted cells in vivo is a major impediment to effective chondrogenesis in situ [7]. To overcome this limitation, gene transfer approaches are being explored clinically [8] and experimentally [9

Table 1 Primer sequences and product sizes, for semi-quantitative and real-time RT-PCR

For a more detailed mRNA expression profile of chondrogenic and hypertrophy associated genes, genetically-modified MSC aggregates were subjected to real-time quantitative PCR analyses. One microliter of each cDNA was used as template for amplification in a 50 μL reaction volume using BioTaq DNA Polymerase Taq (Bioline GmbH, Luckenwalde, Germany) and 50 pmol of gene-specific primers was used for COL II, SOX9, ALP and COL X as listed in Table 1. Real-time PCR conditions were as follows: 30 seconds at 94°C, 30 seconds at annealing temperature, 60 seconds at 72°C (see Table 1 for PCR conditions). Real-time PCR was performed with the DNA Engine Opticon system (MJ Research, Waltham, MA, USA) using SYBR Green (Biozym Scientific GmbH, Hessisch Oldendorf, Germany) as fluorescent dye allowing determination of the threshold cycle at which exponential amplification of PCR products begins. Specificities of amplicons were confirmed by melting curve analyses by gel electrophoresis of test PCR reactions. For quantification mRNA expression was normalized to the expression levels of the housekee** gene EF1α and relative expression levels compared with values from undifferentiated monolayer MSCs are shown using the relative expression software tool (REST) [28]. Each PCR was performed in triplicate on three separate bone marrow preparations for each independent experiment.

Statistical analysis

The data from the ELISA, WST1, ATP, GAG, DNA, and ALP content, cell surface area and RT-PCR analyses were expressed as mean values ± standard deviation (SD). Each experiment was performed in quadruplicate (n = 4) and repeated on at least three and up to six individual marrow preparations from different patients (m = 3 to 6), as indicated in the respective experiments. All numerical data were subjected to variance analysis (one or two factor analysis of variance) and statistical significance was determined by student's t-test, and level of P < 0.05 was considered significant.