Background

The recreational use of cannabis is often justified by extrapolation from the unquestionable physiological role of endocannabinoids in brain function [1], and the successful and beneficial manipulation of the endocannabinoid system for medical purposes [2, 3] by plant extracts from cannabis sativa or synthetic agonist and antagonists specific for cannabinoid receptor1 or 2 (CB1, CB2) [4, 5]. The abuse of cannabis can be associated with detrimental long-term consequences, for example an increased risk of develo** memory impairments [6, 7].

The process of generating new neurons throughout life in the hippocampus probably plays a role in learning and memory processes [8], and impairment of adult hippocampal neurogenesis is thought to be part of the pathogenesis of neurodegenerative disorders like dementia, epilepsy and schizophrenia [9, 10]. Adult neurogenesis is a particular example of brain plasticity as it involves the integration of entire cells [11, 12]. Due to its physiological role in brain plasticity the endocannabinoid system might contribute to the control of adult hippocampal neurogenesis in health and disease. A number of arguments point into the direction that cannabinoids might exert some of their actions via their effects on adult neurogenesis (reviewed in [13]).

The therapeutic activities of cannabinoids include analgesia, immuno-suppression, mood stabilization, anti-emesis, bronchodilatation and neuroprotection [14]. Because of the psychotropic effects of some cannabinoids, their clinical use is limited. Cannabidiol (CBD) is the main non-psychotropic compound of the plant cannabis sativa and belongs to the group of exogenous cannabinoids [15]. Due to its lack of psychoactive actions, CBD represents one of the most promising candidates for clinical application [14]. CBD was shown to act anti-psychotic in Parkinson's disease and as a monotherapy in treatment-resistant schizophrenia [16, 17]. The neuroprotective effects of CBD have been linked with its antioxidant activity [18]. Evidence emerges that CBD realizes some of its effect via the classical CB receptors [19].

Many constituents of the endogenous cannabinoid system like the CB1 and CB2 receptors and their endogenous ligands Anandamide (AEA) and 2-arachidonylglycerol (2-AG) as well as the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) and the 2-AG synthesizing enzyme diacylglycerol lipases are found in neuronal developmental and adult neurogenesis [2022].

Several studies investigating the role of the cannabinoid system in adult neurogenesis found that stimulation of CB1 seemed to either increase or decrease adult neurogenesis [21, 23]. For example, the synthetic agonist HU210 decreased the number of intermediate progenitor cells in one study [24], but promoted neuronal differentiation in another [Behavioral Tests

The Morris water maze (MWM) test is widely used to test rodents for spatial memory performance [75]. We followed the protocol revised by Wolfer and Lipp [76]. Six trials of training, each maximally lasting 2 minutes, were given each day. Latencies to reach the platform and swim paths were recorded with an automatic video tracking system (Ethovision, Noldus, Utrecht, Netherlands).

Animals were exposed to the MWM that contained an escape platform submerged 1 cm below the water line. The platform was kept at a constant location within the pool during the first 3 days of training. On the morning of the 4th day the escape platform was placed in the quadrant opposite to the first target quadrant to start the reversal learning task for two more days. The first trial of the reversal period was analyzed as "probe trial". To control for parameters that are not hippocampus-dependent such as vision impairments, the task was afterwards repeated with a visible platform. To evaluate learning of the spatial location of the platform, latencies to reach the platform (in seconds) and total length of swim path (in pixels converted to cm) were compared between trials. Additionally, the time spent in the target quadrant on the probe trials was used as an indicator of targeted searching for the platform. During the reversal learning, time spent in quadrant 1 (location of the platform during initial training) versus quadrant 3 (location of the platform during reversal training) was measured.

To analyze performance in the MWM test, we performed a repeated measure ANOVA test of the daily means. Analysis of the differences between the groups in the parameters escape latency, and distance moved per day, using the Fisher post-hoc-test, if applicable.

To test general locomotor functions and fitness of the animals, a rotarod was used. The mice were placed on a slowly rotating rod (20 rpm) and a stopwatch was started. The rod accelerated with 20 rpm. When the mice overbalanced and touched the ground, the stopwatch stopped automatically. Each animal performed 4 trials.