Background

Reductions in genetic diversity are of major concern to breeders, geneticists, and the agricultural community in general. In many crops, genetic improvement is usually associated with reduced genetic diversity in the gene pools used to develop the new cultivars, despite the fact that genetic uniformity is believed to increase the potential vulnerability of the crop to biotic and abiotic stresses [1].

The genetic base of cultivars of rice is narrow because of the long history of domestication and genetic improvement. Pedigree analysis indicates that the genetic diversity of indica irrigated rice in China depends on a genetic core derived from the varieties Aizizhan, Nantehao, Shenglixian, Peta, and Dijiaowujian [2]. Between three and six sources of genetic material per location have used by breeders of japonica rice cultivars in China [2, Statistical analysis

Analysis of variance of the 6 × 3 factorial genetic design was used in order to determine in a single comprehensive analysis which among the seven traits were influenced by differences in the cytoplasmic genome and whether those effects depended on the nuclear background, the environment, or both. That preliminary information allowed us then to examine in more detail the differences and rankings of individual cytoplasms where significant differences occurred. Except for yield per plot, all data were from observations on 10 individuals selected randomly from each plot, and the plot mean was used in the analysis of variance. Fixed model analyses using type III sums of squares in SAS PROC GLM [38] were used to detect effects of nucleus, cytoplasm, and interaction between cytoplasm, nucleus, and location. For filled-grain ratio, arscin transformation of the ratio was performed before the analysis. If the three-way interactional effect among cytoplasm, nucleus, and location was significant for traits investigated, the least-squares means (LS-means) of fixed effects was employed to analyze the cytoplasmic effects within each location and nucleus. Duncan's multiple range test was used for multiple comparisons of the effect of cytoplasm and cytoplasm interaction with nucleus and location.