Log in

On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

At nanoscale, surface free energies of the atoms located on the free surfaces of structures significantly affect their mechanical characteristics. In this study, nonlinear large-amplitude free vibration response of nanoshells prepared from functionally graded porous materials (FGPM) is investigated by taking into account surface stress size effects and vibrational mode interactions. Non-classical shell model is constructed on the basis of the Gurtin–Murdoch type of the surface theory of elasticity having the capability of capturing surface stress size dependency. The accuracy of nonlinear vibration analysis is improved by incorporating the interaction of the main vibration mode and the first, third and fifth symmetric oscillation modes. Moreover, the closed-cell Gaussian-Random field scheme is put to use to extract the mechanical characteristics of FGPM nanoshell. Multiple timescales technique is then applied to achieve surface stress elastic-based nonlinear frequency of FGPM nanoshell analytically for different interactions between vibrational modes. It is revealed that by incorporating the interactions of the main vibration mode and higher symmetric oscillation modes, the behavior of the backbone curves belongs to the nonlinear free oscillation response of FGPM nanoshells changes from hardening to softening schema. It is found that when only the main vibration mode is taken into account, surface elasticity effects makes an enhancement in the significance of the hardening schema. However, by considering the interactions of higher symmetric oscillation modes, surface elasticity effects makes a reduction in the significance of the softening schema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kong L, Taniguchi I. Synthesis and electrochemical characterization of porous nanostructured vanadium pentoxide with mesopores and macropores. Mater Lett. 2017;190:266–9.

    Article  Google Scholar 

  2. Figueiredo JL. Nanostructured porous carbons for electrochemical energy conversion and storage. Surf Coat Technol. 2018;350:307–12.

    Article  Google Scholar 

  3. Balamurugan C, Song S-J, Lee D-W. Porous nanostructured GdFeO3 perovskite oxides and their gas response performance to NOx. Sens Actuators B Chem. 2018;272:400–14.

    Article  Google Scholar 

  4. Choi I-A, Kwak D-H, Han S-B, Park K-W. Nitrogen-doped bi-modal porous carbon nanostructure derived from glycine for supercapacitors. J Ind Eng Chem. 2018;63:112–6.

    Article  Google Scholar 

  5. Chen C, Liu M, Rao H, Liu Y, Lin S, Sun J-K, Zhang J. Doped porous carbon nanostructures with N–Co–O catalytic active sites for efficient electrocatalytic oxygen reduction reaction. Appl Surf Sci. 2019;463:386–94.

    Article  Google Scholar 

  6. Safaei B, Fattahi AM, Chu F. Finite element study on elastic transition in platelet reinforced composites. Microsyst Technol. 2018;24:2663–71.

    Article  Google Scholar 

  7. Selim BA, Liu Z, Liew KM. Active vibration control of functionally graded graphene nanoplatelets reinforced composite plates integrated with piezoelectric layers. Thin-Walled Struct. 2019;145:106372.

    Article  Google Scholar 

  8. Qin Z, Safaei B, Pang X, Chu F. Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions. Results Phys. 2019;15:102752.

    Article  Google Scholar 

  9. Safaei B, Moradi-Dastjerdi R, Behdinan K, Chu F. Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers. Aerosp Sci Technol. 2019;91:175–85.

    Article  Google Scholar 

  10. Y. Niu, W. Zhang, X.Y. Guo. Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets. European Journal of MechanicsA/Solids 77 (2019) 103798.

  11. Safaei B, Ahmed NA, Fattahi AM. Free vibration analysis of polyethylene/CNT plate. Eur Phys J Plus. 2019;134:271.

    Article  Google Scholar 

  12. Mao JJ, Lu HM, Zhang W, Lai SK. Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct. 2020;236:111813.

    Article  Google Scholar 

  13. Tran HQ, Vu VT, Tran MT, Nguyen-Tri P. A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced composite plates. Mech Mater. 2020;142:103294.

    Article  Google Scholar 

  14. Qin Z, Shengnan Z, Xuejia P, Safaei B, Chu F. A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. Int J Mech Sci. 2020;170:105341.

    Article  Google Scholar 

  15. Savas O. Application of Taguchi’s method to evaluate abrasive wear behavior of functionally graded aluminum based composite. Mater Today Commun. 2020;23:100920.

    Article  Google Scholar 

  16. Lu L, Guo X, Zhao J. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int J Eng Sci. 2017;116:12–24.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sahmani S, Aghdam MM. Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch Civ Mech Eng. 2017;17:623–38.

    Article  Google Scholar 

  18. Liu JC, Zhang YQ, Fan LF. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between. Phys Lett A. 2017;381:1228–35.

    Article  MathSciNet  Google Scholar 

  19. Wang X. Novel differential quadrature element method for vibration analysis of hybrid nonlocal Euler-Bernoulli beams. Appl Math Lett. 2018;77:94–100.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kolahchi R. A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods. Aerosp Sci Technol. 2017;66:235–48.

    Article  Google Scholar 

  21. Sahmani S, Aghdam MM. Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. J Theor Biol. 2017;422:59–71.

    Article  MathSciNet  MATH  Google Scholar 

  22. Sahmani S, Aghdam MM. Nonlinear vibrations of pre-and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. J Biomech. 2017;65:49–60.

    Article  Google Scholar 

  23. Lu L, Guo X, Zhao J. On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. Int J Eng Sci. 2018;124:24–40.

    Article  MathSciNet  MATH  Google Scholar 

  24. Fang J, Gu J, Wang H. Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory. Int J Mech Sci. 2018;136:188–99.

    Article  Google Scholar 

  25. Apuzzo A, Barretta R, Faghidian SA, Luciano R, Moratti de Sciarra F. Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int J Eng Sci. 2018;133:99–108.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kian K, Pakdaman H. Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients. Int J Mech Sci. 2018;144:576–99.

    Article  Google Scholar 

  27. Sahmani S, Aghdam MM. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Math Biosci. 2018;295:24–35.

    Article  MathSciNet  MATH  Google Scholar 

  28. Sahmani S, Aghdam MM. Nonlinear instability of hydrostatic pressurized microtubules surrounded by cytoplasm of a living cell including nonlocality and strain gradient microsize dependency. Acta Mech. 2018;229:403–20.

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang J, Shen H, Zhang B, Liu J, Zhang Y. Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory. Phys E. 2018;101:85–93.

    Article  Google Scholar 

  30. Hajmohammad MH, Zarei MS, Sepehr M, Abtahi N. Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM. Aerosp Sci Technol. 2018;79:679–88.

    Article  Google Scholar 

  31. Sahmani S, Aghdam MM, Rabczuk T. Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos Struct. 2018;198:51–62.

    Article  Google Scholar 

  32. Sahmani S, Aghdam MM, Rabczuk T. A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets. Mater Res Express. 2018;5:045048.

    Article  Google Scholar 

  33. Sahmani S, Aghdam MM, Rabczuk T. Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos Struct. 2018;186:68–78.

    Article  Google Scholar 

  34. Lu L, Guo X, Zhao J. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl Math Model. 2019;68:583–602.

    Article  MathSciNet  MATH  Google Scholar 

  35. Glabisz W, Jarczewska K, Holubowski R. Stability of Timoshenko beams with frequency and initial stress dependent nonlocal parameters. Arch Civ Mech Eng. 2019;19:1116–26.

    Article  Google Scholar 

  36. Numanoglu HM, Civalek O. On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM. Int J Mech Sci. 2019;161:105076.

    Article  Google Scholar 

  37. Sahmani S, Safaei B. Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin-Walled Struct. 2019;140:342–56.

    Article  Google Scholar 

  38. Sahmani S, Safaei B. Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation. Thin-Walled Struct. 2019;143:106226.

    Article  Google Scholar 

  39. Sahmani S, Safaei B. Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl Math Model. 2020;82:336–58.

    Article  MathSciNet  MATH  Google Scholar 

  40. Alipour MM, Shariyat M. Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civ Mech Eng. 2019;19:1211–34.

    Article  Google Scholar 

  41. Lu L, Zhu L, Guo X, Zhao J, Liu G. A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Appl Math Mech. 2019;40:1695–722.

    Article  MATH  Google Scholar 

  42. Sniady P, Podworna M, Idzikowski R. Stochastic vibrations of the Euler-Bernoulli beam based on various versions of the gradient nonlocal elasticity theory. Probab Eng Mech. 2019;56:27–34.

    Article  Google Scholar 

  43. Sarafraz A, Sahmani S, Aghdam MM. Nonlinear primary resonance analysis of nanoshells including vibrational mode interactions based on the surface elasticity theory. Appl Math Mech. 2020;41:233–60.

    Article  Google Scholar 

  44. Atanasov MS, Stojanovic V. Nonlocal forced vibrations of rotating cantilever nano-beams. Eur J Mech A/Solids. 2020;79:103850.

    Article  MathSciNet  MATH  Google Scholar 

  45. Karami B, Janghorban M. A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams. Thin-Walled Struct. 2019;143:106227.

    Article  Google Scholar 

  46. Kazemi A, Vatankhah R, Farid M. Vibration analysis of size-dependent functionally graded micro-plates subjected to electrostatic and piezoelectric excitations. Eur J Mech A/Solids. 2019;76:46–56.

    Article  MathSciNet  MATH  Google Scholar 

  47. Karamanli A, Aydogdu M. Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory. Int J Mech Sci. 2019;159:165–81.

    Article  Google Scholar 

  48. Zhang B, Li H, Kong L, Shen H, Zhang X. Size-dependent vibration and stability of moderately thick functionally graded micro-plates using a differential quadrature-based geometric map** scheme. Eng Anal Bound Elem. 2019;108:339–65.

    Article  MathSciNet  MATH  Google Scholar 

  49. Sahmani S, Fattahi AM, Ahmed NA. Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. Int J Mech Sci. 2020;165:105203.

    Article  Google Scholar 

  50. Thai CH, Ferreira AJM, Tran TD, Phung-Van P. A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory. Compos Struct. 2020;234:111695.

    Article  Google Scholar 

  51. Wang Y, Ren H, Fu T, Shi C. Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory. Acta Astronaut. 2020;166:306–16.

    Article  Google Scholar 

  52. Gurtin ME, Murdoch AI. A continuum theory of elastic material surface. Arch Ration Mech Anal. 1975;57:291–323.

    Article  MathSciNet  MATH  Google Scholar 

  53. Gurtin ME, Murdoch AI. Surface stress in solids. Int J Solids Struct. 1978;14:431–40.

    Article  MATH  Google Scholar 

  54. Sahmani S, Bahrami M, Aghdam MM, Ansari R. Postbuckling behavior of circular higher-order shear deformable nanoplates including surface energy effects. Appl Math Model. 2015;39:3678–89.

    Article  MathSciNet  MATH  Google Scholar 

  55. Sahmani S, Bahrami M, Aghdam MM. Surface stress effects on the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to combined axial and radial compressions. Int J Mech Sci. 2015;100:1–22.

    Article  Google Scholar 

  56. Sahmani S, Aghdam MM, Bahrami M. Nonlinear buckling and postbuckling behavior of cylindrical nanoshells subjected to combined axial and radial compressions incorporating surface stress effects. Compos B Eng. 2015;79:676–91.

    Article  Google Scholar 

  57. Sahmani S, Aghdam MM, Bahrami M. On the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to radial compression including surface stress effects. Compos Struct. 2015;131:414–24.

    Article  MATH  Google Scholar 

  58. Sahmani S, Bahrami M, Aghdam MM. Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression. Int J Eng Sci. 2016;99:92–106.

    Article  MathSciNet  MATH  Google Scholar 

  59. Sahmani S, Aghdam MM, Bahrami M. Size-dependent axial buckling and postbuckling characteristics of cylindrical nanoshells in different temperatures. Int J Mech Sci. 2016;107:170–9.

    Article  Google Scholar 

  60. Gad AI, Mohammad FF, Alshorbagy AE, Ali-Eldin SS. Finite element modeling for elastic nano-indentation problems incorporating surface energy effect. Int J Mech Sci. 2014;84:158–70.

    Article  Google Scholar 

  61. Shaat M, Mahmoud FF, Gao X-L, Faheem AF. Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int J Mech Sci. 2014;84:158–70.

    Google Scholar 

  62. Raghu P, Preethi K, Rajagopal A, Reddy JN. Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects. Compos Struct. 2016;139:13–29.

    Article  Google Scholar 

  63. Zhu C-S, Fang X-Q, Liu J-X. Surface energy effect on buckling behavior of the functionally graded nano-shell covered with piezoelectric nano-layers under torque. Int J Mech Sci. 2017;133:662–73.

    Article  Google Scholar 

  64. Zhu C-S, Fang X-Q, Liu J-X. Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells. Eur J Mech A/Solids. 2017;66:423–32.

    Article  MathSciNet  MATH  Google Scholar 

  65. Oskouie MF, Ansari R, Sadeghi F. Nonlinear vibration analysis of fractional viscoelastic Euler-Bernoulli nanobeams based on the surface stress theory. Acta Mech Solida Sin. 2017;30:416–24.

    Article  Google Scholar 

  66. Wang YQ, Li HH, Zhang YF, Zu WJ. A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid. Appl Math Model. 2018;64:55–70.

    Article  MathSciNet  MATH  Google Scholar 

  67. Sahmani S, Fattahi AM, Ahmed NA. Radial postbuckling of nanoscaled shells embedded in elastic foundations based on Ru’s surface stress elasticity theory. Mech Based Des Struct Mach. 2019;47:787–806.

    Article  Google Scholar 

  68. Kachapi SHH, Dardel M, Daniali HM, Fathi A. Pull-in instability and nonlinear vibration analysis of electrostatically piezoelectric nanoresonator with surface/interface effects. Thin-Walled Struct. 2019;143:106210.

    Article  Google Scholar 

  69. Kachapi SHH, Dardel M, Daniali HM, Fathi A. Nonlinear dynamics and stability analysis of piezo-visco medium nanoshell resonator with electrostatic and harmonic actuation. Appl Math Model. 2019;75:279–309.

    Article  MathSciNet  MATH  Google Scholar 

  70. Liu S, Yu T, Lich LV, Yin S, Bui TQ. Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput Struct. 2019;212:173–87.

    Article  Google Scholar 

  71. Sarafraz A, Sahmani S, Aghdam MM. Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects. Appl Math Model. 2019;66:195–226.

    Article  MathSciNet  MATH  Google Scholar 

  72. Hashemian M, Foroutan S, Toghraie D. Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mech Mater. 2019;139:103209.

    Article  Google Scholar 

  73. Motezaker M, Jamali M, Kolahchi R. Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. J Comput Appl Math. 2020;369:112625.

    Article  MathSciNet  MATH  Google Scholar 

  74. Roberts AP, Garboczi EJ. Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 2001;49:189–97.

    Article  Google Scholar 

  75. Amabili M, Pellicano F, Païdoussis M. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, Part II: large-amplitude vibrations without flow. J Sound Vib. 1999;228:1103–24.

    Article  Google Scholar 

  76. Amabili M, Paıdoussis MP. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl Mech Rev. 2003;56:349–81.

    Article  Google Scholar 

  77. Zeighampour H, Beni YT. Cylindrical thin-shell model based on modified strain gradient theory. Int J Eng Sci. 2014;78:27–47.

    Article  MathSciNet  MATH  Google Scholar 

  78. Miller RE, Shenoy VB. Size-dependent elastic properties of nanosized structural elements. Nanotechnology. 2000;11:139–47.

    Article  Google Scholar 

  79. Zhu R, Pan E, Chung PW, Cai X, Liew KM, Buldum A. Atomistic calculation of elastic moduli in strained silicon. Semicond Sci Technol. 2006;21:906–11.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the program of research learning and innovation for college students in Hunan province in 2018, research and application of BIM technology based on library project of Hunan Institute of Technology (No.111), and the program of research learning and innovation for college students in Hunan Institute of Technology in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Sahmani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$c_{1} \left( t \right) = \eta \pi^{2} A_{1,n} /\left[ {\left( {\xi^{2} \eta^{2} \pi^{4} + \left( {\eta /\xi } \right)^{2} n^{4} } \right)\bar{\varGamma }_{1} + \eta^{2} \pi^{2} n^{2} \left( {\bar{\varGamma }_{2} - 2\bar{\varGamma }_{5} } \right)} \right]$$
$$c_{2} \left( t \right) = A_{1,0} /\left( {\xi^{2} \eta \pi^{2} \bar{\varGamma }_{1} } \right)$$
$$c_{3} \left( t \right) = A_{3,0} /\left( {9\xi^{2} \eta \pi^{2} \bar{\varGamma }_{1} } \right)$$
$$c_{4} \left( t \right) = A_{5,0} /\left( {25\xi^{2} \eta \pi^{2} \bar{\varGamma }_{1} } \right)$$
$$c_{5} \left( t \right) = n^{2} A_{1,n}^{2} /\left( {32\xi^{2} \pi^{2} \bar{\varGamma }_{1} } \right)$$
$$c_{6} \left( t \right) = \xi^{2} \pi^{2} A_{1,n} A_{1,0} /\left( {2n^{2} \bar{\varGamma }_{1} } \right)$$
$$ \begin{aligned}c_{7} \left( t \right) &= n^{2} \eta^{2} \pi^{2} A_{1,n} \left( {A_{1,0} - 9A_{3,0} } \right)/\\ &\quad\left[ {2\left( {16\xi^{2} \eta^{2} \pi^{4} + \left( {\eta /\xi } \right)^{2} n^{4} } \right)\bar{\varGamma }_{1} + 8\eta^{2} \pi^{2} n^{2} \left( {\bar{\varGamma }_{2} - 2\bar{\varGamma }_{5} } \right)} \right]\end{aligned} $$
$$ \begin{aligned}c_{8} \left( t \right) &= n^{2} \eta^{2} \pi^{2} A_{1,n} \left( {9A_{3,0} - 25A_{5,0} } \right)/\\ &\quad\left[ {2\left( {256\xi^{2} \eta^{2} \pi^{4} + \left( {\eta /\xi } \right)^{2} n^{4} } \right)\bar{\varGamma }_{1} + 32\eta^{2} \pi^{2} n^{2} \left( {\bar{\varGamma }_{2} - 2\bar{\varGamma }_{5} } \right)} \right]\end{aligned} $$
$$ \begin{aligned}c_{9} \left( t \right)& = 25n^{2} \eta^{2} \pi^{2} A_{1,n} A_{5,0} /\\ &\quad\left[ {2\left( {1296\xi^{2} \eta^{2} \pi^{4} + \left( {\eta /\xi } \right)^{2} n^{4} } \right)\bar{\varGamma }_{1} + 36\eta^{2} \pi^{2} n^{2} \left( {\bar{\varGamma }_{2} - 2\bar{\varGamma }_{5} } \right)} \right]\end{aligned} $$
$$c_{10} \left( t \right) = - \xi^{2} \pi^{2} A_{1,n}^{2} /\left( {32n^{2} \bar{\varGamma }_{1} } \right)$$

Appendix 2

For the second case of study, one will have

$$\left\{ {\begin{array}{*{20}l} \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{12} + \omega_{0}^{2} \fancyscript{q}_{12} & = - 2i\omega_{0} {\mathcal{A}}_{{,T_{2} }} e^{{i\omega_{0} T_{0} }} - 2i\xi_{1,n} \omega_{0}^{2} {\mathcal{A}}e^{{i\omega_{0} T_{0} }} - 3\bar{\alpha }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left[ {\bar{\alpha }_{2} \bar{\beta }_{1} /\left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} + \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\omega_{1}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} - \alpha_{5} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} + {\text{NST}} + {\text{CC}} \\ \end{aligned} \hfill \\ \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{22} + \omega_{1}^{2} \fancyscript{q}_{22} & = - 2i\omega_{1} {\mathcal{B}}_{{,T_{2} }} e^{{i\omega_{1} T_{0} }} - 2i\xi_{1,0} \omega_{1}^{2} {\mathcal{B}}e^{{i\omega_{1} T_{0} }} - \bar{\beta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} \\ & \quad - \;\left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} \\ & \quad - \;2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]{\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} + {\text{NST}} + {\text{CC}} \\ \end{aligned} \hfill \\ \end{array} } \right.$$
(87)

where \(NST\) is the non-secular terms.

Through elimination of the secular terms, one will have

$$\begin{aligned} & - 2i\omega_{0} {\mathcal{A}}_{{,T_{2} }} - 2i\xi_{1,n} \omega_{0}^{2} {\mathcal{A}} - 3\bar{\alpha }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}} - \left[ {\bar{\alpha }_{2} \bar{\beta }_{1} /\left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}} + \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\omega_{1}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}} \\ & \quad - \;\left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} - \left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} - \bar{\alpha }_{5} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} = 0 \\ \end{aligned}$$
$$\begin{aligned} & - 2i\omega_{1} {\mathcal{B}}_{{,T_{2} }} - 2i\xi_{1,0} \omega_{1}^{2} {\mathcal{B}} - \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{B}} \\ & \quad - \;\left( {\bar{\alpha }_{2}^{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} - \bar{\beta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{B}} = 0 \\ \end{aligned}$$
(88)

After that, for the functions of \(\left( {T_{2} } \right)\) and \({\mathcal{B}}\left( {T_{2} } \right)\), polar forms are assumed as

$${\mathcal{A}}\left( {T_{2} } \right) = a\left( {T_{2} } \right)e^{{i\varsigma \left( {T_{2} } \right)}} /2,\quad {\mathcal{B}}\left( {T_{2} } \right) = b\left( {T_{2} } \right)e^{{i\ell \left( {T_{2} } \right)}} /2$$
(89)

Eq. (89) is inserted in Eq. (88) to obtain a set of equations as

$$\left\{ {\begin{array}{*{20}l} {\fancyscript{a}_{{,T_{2} }} = - \xi_{1,n} \omega_{0} \fancyscript{a}} \hfill \\ \begin{aligned} & \fancyscript{a}\varsigma_{{,T_{2} }} - 3\bar{\alpha }_{1} \fancyscript{a}^{3} /\left( {8\omega_{0} } \right) - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{3} /\left[ {8\omega_{0} \left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right] + \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{3} /\left( {4\omega_{0} \omega_{1}^{2} } \right) \\ & \quad - \;\bar{\alpha }_{2}^{2} \fancyscript{a}\fancyscript{b}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{2}^{2} \fancyscript{a}\fancyscript{b}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\alpha }_{5} \fancyscript{a}\fancyscript{b}^{2} /\left( {8\omega_{0} } \right) = 0 \\ \end{aligned} \hfill \\ {\fancyscript{b}_{{,T_{2} }} + \xi_{1,0} \omega_{1} \fancyscript{b} = 0} \hfill \\ \begin{aligned} & \fancyscript{b}\ell_{{,T_{2} }} - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{2} b/\left[ {4\omega_{1} \left( {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{2} b/\left[ {4\omega_{1} \left( {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\beta }_{2} \fancyscript{a}^{2} b/\left( {8\omega_{1} } \right) = 0 \\ \end{aligned} \hfill \\ \end{array} } \right.$$
(90)

For the third case of study, one will have

$$\left\{ {\begin{array}{*{20}l} \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{12} + \omega_{0}^{2} \fancyscript{q}_{12} & = - 2i\omega_{0} {\mathcal{A}}_{{,T_{2} }} e^{{i\omega_{0} T_{0} }} - 2i\xi_{1,n} \omega_{0}^{2} {\mathcal{A}}e^{{i\omega_{0} T_{0} }} - 3\bar{\alpha }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left[ {\bar{\alpha }_{2} \bar{\beta }_{1} /\left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} + \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\omega_{1}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} - \left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left[ {\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left( {4\omega_{0}^{2} - \omega_{3}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} + \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\omega_{3}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{3}^{2} /\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{C}\bar{\mathcal{C}}}e^{{i\omega_{0} T_{0} }} - \left( {\bar{\alpha }_{3}^{2} /\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{C}\bar{\mathcal{C}}\bar{\mathcal{C}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\alpha_{5} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} - \alpha_{6} {\mathcal{A}\mathcal{C}\bar{\mathcal{C}}}e^{{i\omega_{0} T_{0} }} + {\text{NST}} + {\text{CC}} \\ \end{aligned} \hfill \\ \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{22} + \omega_{1}^{2} \fancyscript{q}_{22} & = - 2i\omega_{1} {\mathcal{B}}_{{,T_{2} }} e^{{i\omega_{1} T_{0} }} - 2i\xi_{1,0} \omega_{1}^{2} {\mathcal{B}}e^{{i\omega_{1} T_{0} }} - \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}} \\ & \quad - \;\left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} - \bar{\beta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} + {\text{NST}} + {\text{CC}} \\ \end{aligned} \hfill \\ \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{32} + \omega_{3}^{2} \fancyscript{q}_{32} & = - 2i\omega_{3} {\mathcal{C}}_{{,T_{2} }} e^{{i\omega_{3} T_{0} }} - 2i\xi_{3,0} \omega_{3}^{2} {\mathcal{C}}e^{{i\omega_{3} T_{0} }} - \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}} \\ & \quad - \;2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right]{\mathcal{A}\bar{\mathcal{A}}\mathcal{C}}e^{{i\omega_{3} T_{0} }} - \bar{\vartheta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{C}}e^{{i\omega_{3} T_{0} }} + {\text{NST}} + {\text{CC}} \\ \end{aligned} \hfill \\ \end{array} } \right.$$
(91)

Through elimination of the secular terms, one will have

$$\begin{aligned} & - 2i\omega_{0} {\mathcal{A}}_{{,T_{2} }} - 2i\xi_{1,n} \omega_{0}^{2} {\mathcal{A}} - 3\bar{\alpha }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}} - \left[ {\bar{\alpha }_{2} \bar{\beta }_{1} /\left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}} \\ & \quad + \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\omega_{1}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}} - \left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} \\ & \quad - \left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} - \left[ {\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left( {4\omega_{0}^{2} - \omega_{3}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}} + \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\omega_{3}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}} \\ & \quad - \left( {\bar{\alpha }_{3}^{2} /\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{C}\bar{\mathcal{C}}} - \left( {\bar{\alpha }_{3}^{2} /\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{C}\bar{\mathcal{C}}} - \bar{\alpha }_{5} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} \\ \end{aligned}$$
$$\begin{aligned} & - 2i\omega_{1} {\mathcal{B}}_{{,T_{2} }} - 2i\xi_{1,0} \omega_{1}^{2} {\mathcal{B}} - \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{B}} \\ & \quad - \left( {\bar{\alpha }_{2}^{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} - \bar{\beta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{B}} = 0 \\ \end{aligned}$$
(92)
$$\begin{aligned} & - 2i\omega_{3} {\mathcal{C}}_{{,T_{2} }} - 2i\xi_{3,0} \omega_{3}^{2} {\mathcal{C}} - \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{C}} \\ & \quad - \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{C}} - \bar{\vartheta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{C}} = 0 \\ \end{aligned}$$

After that, for the functions of \(\left( {T_{2} } \right)\), \({\mathcal{B}}\left( {T_{2} } \right)\), and \({\mathcal{C}}\left( {T_{2} } \right)\), polar forms are assumed as

$$ \begin{aligned}& {\mathcal{A}}\left( {T_{2} } \right) = \fancyscript{a}\left( {T_{2} } \right)e^{{i\varsigma \left( {T_{2} } \right)}} /2,\quad {\mathcal{B}}\left( {T_{2} } \right) = \fancyscript{b}\left( {T_{2} } \right)e^{{i\ell \left( {T_{2} } \right)}} /2,\quad \\ &{\mathcal{C}}\left( {T_{2} } \right) = \fancyscript{c}\left( {T_{2} } \right)e^{{i{\mathcal{J}}\left( {T_{2} } \right)}} /2\end{aligned} $$
(93)

Eq. (93) is inserted in Eq. (92) to obtain a set of equations as

$$\left\{ {\begin{array}{*{20}l} {\fancyscript{a}_{{,T_{2} }} + \xi_{1,n} \omega_{0} \fancyscript{a} = 0} \hfill \\ \begin{aligned} & \fancyscript{a}\varsigma_{{,T_{2} }} - 3\bar{\alpha }_{1} \fancyscript{a}^{3} /\left( {8\omega_{0} } \right) - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{3} /\left[ {8\omega_{0} \left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right] + \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{3} /\left( {4\omega_{0} \omega_{1}^{2} } \right) \\ & \quad - \;\bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{3} /\left[ {8\omega_{0} \left( {4\omega_{0}^{2} - \omega_{3}^{2} } \right)} \right] + \bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{3} /\left( {4\omega_{0} \omega_{3}^{2} } \right) - \bar{\alpha }_{2}^{2} \fancyscript{a}\fancyscript{b}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\alpha }_{2}^{2} \fancyscript{a}\fancyscript{b}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{3}^{2} \fancyscript{a}\fancyscript{c}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\alpha }_{3}^{2} \fancyscript{a}\fancyscript{c}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{5} \fancyscript{a}\fancyscript{b}^{2} /\left( {8\omega_{0} } \right) - \bar{\alpha }_{6} \fancyscript{a}\fancyscript{c}^{2} /\left( {8\omega_{0} } \right) = 0 \\ \end{aligned} \hfill \\ {\fancyscript{b}_{{,T_{2} }} + \xi_{1,0} \omega_{1} b = 0} \hfill \\ \begin{aligned} & \fancyscript{b}\ell_{{,T_{2} }} - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{2} \fancyscript{b}/\left[ {4\omega_{1} \left( {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{2} \fancyscript{b}/\left[ {4\omega_{1} \left( {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\beta }_{2} \fancyscript{a}^{2} b/\left( {8\omega_{1} } \right) = 0 \\ \end{aligned} \hfill \\ {\fancyscript{c}_{{,T_{2} }} + \xi_{3,0} \omega_{3} \fancyscript{c} = 0} \hfill \\ \begin{aligned} & \fancyscript{c}{\mathcal{J}}_{{,T_{2} }} - \bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{2} \fancyscript{c}/\left[ {4\omega_{3} \left( {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{2} \fancyscript{c}/\left[ {4\omega_{3} \left( {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\vartheta }_{2} \fancyscript{a}^{2} \fancyscript{c}/\left( {8\omega_{3} } \right) = 0 \\ \end{aligned} \hfill \\ \end{array} } \right.$$
(94)

For the forth case of study, one will have

$$\left\{ {\begin{array}{*{20}l} \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{12} + \omega_{0}^{2} \fancyscript{q}_{12} & = - 2i\omega_{0} {\mathcal{A}}_{{,T_{2} }} e^{{i\omega_{0} T_{0} }} - 2i\xi_{1,n} \omega_{0}^{2} {\mathcal{A}}e^{{i\omega_{0} T_{0} }} - 3\bar{\alpha }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left[ {\bar{\alpha }_{2} \bar{\beta }_{1} /\left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} + \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\omega_{1}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} - \left[ {\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left( {4\omega_{0}^{2} - \omega_{3}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{2}^{2} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} + \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\omega_{3}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{3}^{2} /\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{C}\bar{\mathcal{C}}}e^{{i\omega_{0} T_{0} }} + \left( {2\bar{\alpha }_{4} \bar{\psi }_{1} /\omega_{5}^{2} } \right){\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{3}^{2} /\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{C}\bar{\mathcal{C}}}e^{{i\omega_{0} T_{0} }} - \left[ {\bar{\alpha }_{4} \bar{\psi }_{1} /\left( {4\omega_{0}^{2} - \omega_{5}^{2} } \right)} \right]{\mathcal{A}}^{2} {\bar{\mathcal{A}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{4}^{2} /\left[ {\left( {\omega_{5} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{F}\bar{\mathcal{F}}}e^{{i\omega_{0} T_{0} }} - \alpha_{5} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\left( {\bar{\alpha }_{4}^{2} /\left[ {\left( {\omega_{5} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\mathcal{F}\bar{\mathcal{F}}}e^{{i\omega_{0} T_{0} }} - \alpha_{6} {\mathcal{A}\mathcal{C}\bar{\mathcal{C}}}e^{{i\omega_{0} T_{0} }} \\ & \quad - \;\alpha_{7} {\mathcal{A}\mathcal{F}\bar{\mathcal{F}}}e^{{i\omega_{0} T_{0} }} + NST + CC \\ \end{aligned} \hfill \\ \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{22} + \omega_{1}^{2} \fancyscript{q}_{22} & = - 2i\omega_{1} {\mathcal{B}}_{{,T_{2} }} e^{{i\omega_{1} T_{0} }} - \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} \\ & \quad - \;2i\xi_{1,0} \omega_{1}^{2} {\mathcal{B}}e^{{i\omega_{1} T_{0} }} - \left( {2\bar{\alpha }_{2} \bar{\beta }_{1} /\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} \\ & \quad - \;\bar{\beta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}e^{{i\omega_{1} T_{0} }} + NST + CC \\ \end{aligned} \hfill \\ \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{32} + \omega_{3}^{2} \fancyscript{q}_{32} & = - 2i\omega_{3} {\mathcal{C}}_{{,T_{2} }} e^{{i\omega_{3} T_{0} }} - \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{C}}e^{{i\omega_{3} T_{0} }} \\ & \quad - \;2i\xi_{3,0} \omega_{3}^{2} {\mathcal{C}}e^{{i\omega_{3} T_{0} }} - \left( {2\bar{\alpha }_{3} \bar{\vartheta }_{1} /\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{C}}e^{{i\omega_{3} T_{0} }} \\ & \quad - \;\bar{\vartheta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{C}}e^{{i\omega_{3} T_{0} }} + NST + CC \\ \end{aligned} \hfill \\ \begin{aligned} {\mathcal{D}}_{0}^{2} \fancyscript{q}_{42} + \omega_{5}^{2} \fancyscript{q}_{42} & = - 2i\omega_{5} {\mathcal{F}}_{{,T_{2} }} e^{{i\omega_{5} T_{0} }} - \left( {2\bar{\alpha }_{4} \bar{\psi }_{1} /\left[ {\left( {\omega_{5} + \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{F}}e^{{i\omega_{5} T_{0} }} \\ & \quad - \;2i\xi_{5,0} \omega_{5}^{2} {\mathcal{F}}e^{{i\omega_{5} T_{0} }} - \left( {2\bar{\alpha }_{4} \bar{\psi }_{1} /\left[ {\left( {\omega_{5} - \omega_{0} } \right)^{2} - 1} \right]} \right){\mathcal{A}\bar{\mathcal{A}}\mathcal{F}}e^{{i\omega_{5} T_{0} }} \\ & \quad - \;\bar{\psi }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{F}}e^{{i\omega_{5} T_{0} }} + NST + CC \\ \end{aligned} \hfill \\ \end{array} } \right.$$
(95)

Through elimination of the secular terms, one will have

$$\begin{aligned} & - 2i\omega_{0} {\mathcal{A}}_{{,T_{2} }} - 2i\xi_{1,n} \omega_{0}^{2} {\mathcal{A}} - 3\bar{\alpha }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}} - \bar{\alpha }_{2} \bar{\beta }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}/\left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right) \\ & \quad + \;2\bar{\alpha }_{2} \bar{\beta }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}/\omega_{1}^{2} - \bar{\alpha }_{2}^{2} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}/\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right] \\ & \quad - \;\bar{\alpha }_{2}^{2} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}/\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right] - \bar{\alpha }_{3} \bar{\vartheta }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}/\left( {4\omega_{0}^{2} - \omega_{3}^{2} } \right) + 2\bar{\alpha }_{3} \bar{\vartheta }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}/\omega_{3}^{2} \\ & \quad - \;\bar{\alpha }_{3}^{2} {\mathcal{A}\mathcal{C}\bar{\mathcal{C}}}/\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right] - \bar{\alpha }_{3}^{2} {\mathcal{A}\mathcal{C}\bar{\mathcal{C}}}/\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right] \\ & \quad - \;\bar{\alpha }_{4} \bar{\psi }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}/\left( {4\omega_{0}^{2} - \omega_{5}^{2} } \right) + 2\bar{\alpha }_{4} \bar{\psi }_{1} {\mathcal{A}}^{2} {\bar{\mathcal{A}}}/\omega_{5}^{2} - \bar{\alpha }_{4}^{2} {\mathcal{A}\mathcal{F}\bar{\mathcal{F}}}/\left[ {\left( {\omega_{5} + \omega_{0} } \right)^{2} - 1} \right] \\ & \quad - \;\bar{\alpha }_{4}^{2} {\mathcal{A}\mathcal{F}\bar{\mathcal{F}}}/\left[ {\left( {\omega_{5} - \omega_{0} } \right)^{2} - 1} \right] - \bar{\alpha }_{5} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}} - \alpha_{6} {\mathcal{A}\mathcal{C}\bar{\mathcal{C}}} - \alpha_{7} {\mathcal{A}\mathcal{F}\bar{\mathcal{F}}} = 0 \\ \end{aligned}$$
$$\begin{aligned} & - 2i\omega_{1} {\mathcal{B}}_{{,T_{2} }} - 2i\xi_{1,0} \omega_{1}^{2} {\mathcal{B}} - 2\bar{\alpha }_{2} \bar{\beta }_{1} {\mathcal{A}\bar{\mathcal{A}}\mathcal{B}}/\left[ {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right] \\ & \quad - \;\bar{\alpha }_{2}^{2} \bar{\beta }_{1} {\mathcal{A}\mathcal{B}\bar{\mathcal{B}}}/\left[ {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right] - \bar{\beta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{B}} = 0 \\ \end{aligned}$$
$$\begin{aligned} & - 2i\omega_{3} {\mathcal{C}}_{{,T_{2} }} - 2i\xi_{3,0} \omega_{3}^{2} {\mathcal{C}} - 2\bar{\alpha }_{3} \bar{\vartheta }_{1} {\mathcal{A}\bar{\mathcal{A}}\mathcal{C}}/\left[ {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right] \\ & \quad - \;2\bar{\alpha }_{3} \bar{\vartheta }_{1} {\mathcal{A}\bar{\mathcal{A}}\mathcal{C}}/\left[ {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right] - \bar{\vartheta }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{C}} = 0 \\ \end{aligned}$$
(96)
$$\begin{aligned} & - 2i\omega_{5} {\mathcal{F}}_{{,T_{2} }} - 2i\xi_{5,0} \omega_{5}^{2} {\mathcal{F}} - 2\bar{\alpha }_{4} \bar{\psi }_{1} {\mathcal{A}\bar{\mathcal{A}}\mathcal{F}}/\left[ {\left( {\omega_{5} + \omega_{0} } \right)^{2} - 1} \right] \\ & \quad - \;2\bar{\alpha }_{4} \bar{\psi }_{1} {\mathcal{A}\bar{\mathcal{A}}\mathcal{F}}/\left[ {\left( {\omega_{5} - \omega_{0} } \right)^{2} - 1} \right] - \bar{\psi }_{2} {\mathcal{A}\bar{\mathcal{A}}\mathcal{F}} = 0 \\ \end{aligned}$$

After that, for the functions of \(\left( {T_{2} } \right)\), \({\mathcal{B}}\left( {T_{2} } \right)\), \({\mathcal{C}}\left( {T_{2} } \right)\), and \({\mathcal{F}}\left( {T_{2} } \right)\), polar forms are assumed as

$${\mathcal{A}}\left( {T_{2} } \right) = \fancyscript{a}\left( {T_{2} } \right)e^{{i\varsigma \left( {T_{2} } \right)}} /2,\quad {\mathcal{B}}\left( {T_{2} } \right) = \fancyscript{b}\left( {T_{2} } \right)e^{{i\ell \left( {T_{2} } \right)}} /2$$
(97)
$${\mathcal{C}}\left( {T_{2} } \right) = \fancyscript{c}\left( {T_{2} } \right)e^{{i{\mathcal{J}}\left( {T_{2} } \right)}} /2,\quad {\mathcal{F}}\left( {T_{2} } \right) = \fancyscript{f}\left( {T_{2} } \right)e^{{i{\mathcal{K}}\left( {T_{2} } \right)}} /2$$

Equation (97) is inserted in Eq. (96) to obtain a set of equations as

$$\left\{ {\begin{array}{*{20}l} {\fancyscript{a}_{{,T_{2} }} + \xi_{1,n} \omega_{0} \fancyscript{a} = 0} \hfill \\ \begin{aligned} & \fancyscript{a}\varsigma_{{,T_{2} }} - 3\bar{\alpha }_{1} \fancyscript{a}^{3} /\left( {8\omega_{0} } \right) - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{3} /\left[ {8\omega_{0} \left( {4\omega_{0}^{2} - \omega_{1}^{2} } \right)} \right] + \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{3} /\left( {4\omega_{0} \omega_{1}^{2} } \right) \\ & \quad - \;\bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{3} /\left[ {8\omega_{0} \left( {4\omega_{0}^{2} - \omega_{3}^{2} } \right)} \right] + \bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{3} /\left( {4\omega_{0} \omega_{3}^{2} } \right) - \bar{\alpha }_{4} \bar{\psi }_{1} \fancyscript{a}^{3} /\left[ {8\omega_{0} \left( {4\omega_{0}^{2} - \omega_{5}^{2} } \right)} \right] \\ & \quad + \;\bar{\alpha }_{4} \bar{\psi }_{1} \fancyscript{a}^{3} /\left( {4\omega_{0} \omega_{5}^{2} } \right) - \bar{\alpha }_{2}^{2} \fancyscript{a}\fancyscript{b}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{5} \fancyscript{a}\fancyscript{b}^{2} /\left( {8\omega_{0} } \right) \\ & \quad - \;\bar{\alpha }_{2}^{2} \fancyscript{a}\fancyscript{b}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{1} - \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{3}^{2} \fancyscript{a}\fancyscript{c}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\alpha }_{6} \fancyscript{a}\fancyscript{c}^{2} /\left( {8\omega_{0} } \right) - \bar{\alpha }_{3}^{2} \fancyscript{a}\fancyscript{c}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{4}^{2} \fancyscript{a}\fancyscript{f}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{5} + \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\alpha }_{4}^{2} \fancyscript{a}\fancyscript{f}^{2} /\left[ {8\omega_{0} \left( {\left( {\omega_{5} - \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{7} \fancyscript{a}\fancyscript{f}^{2} /\left( {8\omega_{0} } \right) = 0 \\ \end{aligned} \hfill \\ {\fancyscript{b}_{{,T_{2} }} + \xi_{1,0} \omega_{1} b = 0} \hfill \\ \begin{aligned} & \fancyscript{b}\ell_{{,T_{2} }} - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{2} b/\left[ {4\omega_{1} \left( {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{2} \bar{\beta }_{1} \fancyscript{a}^{2} \fancyscript{b}/\left[ {4\omega_{1} \left( {\left( {\omega_{1} + \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\beta }_{2} \fancyscript{a}^{2} b/\left( {8\omega_{1} } \right) = 0 \\ \end{aligned} \hfill \\ {\fancyscript{c}_{{,T_{2} }} + \xi_{3,0} \omega_{3} \fancyscript{c} = 0} \hfill \\ \begin{aligned} & \fancyscript{c}{\mathcal{J}}_{{,T_{2} }} - \bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{2} c/\left[ {4\omega_{3} \left( {\left( {\omega_{3} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{3} \bar{\vartheta }_{1} \fancyscript{a}^{2} c/\left[ {4\omega_{3} \left( {\left( {\omega_{3} - \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\vartheta }_{2} \fancyscript{a}^{2} \fancyscript{c}/\left( {8\omega_{3} } \right) = 0 \\ \end{aligned} \hfill \\ {\fancyscript{f}_{{,T_{2} }} + \xi_{3,0} \omega_{5} \fancyscript{f} = 0} \hfill \\ \begin{aligned} & \fancyscript{f}{\mathcal{K}}_{{,T_{2} }} - \bar{\alpha }_{4} \bar{\psi }_{1} \fancyscript{a}^{2} f/\left[ {4\omega_{5} \left( {\left( {\omega_{5} + \omega_{0} } \right)^{2} - 1} \right)} \right] - \bar{\alpha }_{4} \bar{\psi }_{1} \fancyscript{a}^{2} f/\left[ {4\omega_{5} \left( {\left( {\omega_{5} - \omega_{0} } \right)^{2} - 1} \right)} \right] \\ & \quad - \;\bar{\psi }_{2} \fancyscript{a}^{2} f/\left( {8\omega_{5} } \right) = 0 \\ \end{aligned} \hfill \\ \end{array} } \right.$$
(98)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Sahmani, S. & Safaei, B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Archiv.Civ.Mech.Eng 20, 48 (2020). https://doi.org/10.1007/s43452-020-00047-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00047-9

Keywords

Navigation