Log in

Lie centralizers at zero products on a class of operator algebras

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

Let \({\mathcal {A}}\) be an algebra. In this paper, we consider the problem of determining a linear map \(\psi \) on \({\mathcal {A}}\) satisfying \(a,b\in {\mathcal {A}}\), \(ab=0 \Longrightarrow \psi ([a,b])=[\psi (a),b] \, (C1) \) or \(ab=0 \Longrightarrow \psi ([a,b])=[a,\psi (b)] \, (C2)\). We first compare linear maps satisfying (C1) or (C2), commuting linear maps, and Lie centralizers with a variety of examples. In fact, we see that linear maps satisfying (C1), (C2) and commuting linear maps are different classes of each other. Then, we introduce a class of operator algebras on Banach spaces such that if \({\mathcal {A}}\) is in this class, then any linear map on \({\mathcal {A}}\) satisfying (C1) (or (C2)) is a commuting linear map. As an application of these results, we characterize Lie centralizers and linear maps satisfying (C1) (or (C2)) on nest algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brešar, M.: Centralizing map**s and derivations in prime rings. J. Algebra 156, 385–394 (1993)

    Article  MathSciNet  Google Scholar 

  2. Brešar, M.: Commuting traces of biadditive map**s, commutativity-preserving map**s and Lie map**s. Trans. Am. Math. Soc. 335, 525–546 (1993)

    Article  MathSciNet  Google Scholar 

  3. Brešar, M.: Commuting maps: a survey. Taiwan. J. Math. 8, 361–397 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Brešar, M.: Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc. R. Soc. Edinb. Sect. A 137, 9–21 (2007)

    Article  MathSciNet  Google Scholar 

  5. Brešar, M., Chebotar, M.A., Martindale, W.S., 3rd.: Functional Identities. Birkhäuser, Boston (2007)

    Book  Google Scholar 

  6. Burgos, M., Ortega, J.S.: On map**s preserving zero products. Linear Multilinear Algebra 61, 323–335 (2013)

    Article  MathSciNet  Google Scholar 

  7. Cheung, W.S.: Commuting maps of triangular algebras. J. Lond. Math. Soc. 63, 117–127 (2001)

    Article  MathSciNet  Google Scholar 

  8. Fošner, A., **g, W.: Lie centralizers on triangular rings and nest algebras. Adv. Oper. Theory 4, 342–350 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ghahramani, H.: Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal elements. Results Math. 73, 132–146 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ghahramani, H.: Characterizing Jordan maps on triangular rings through commutative zero products. Mediterr. J. Math. 15, 38 (2018)

    Article  MathSciNet  Google Scholar 

  11. Ghahramani, H., Pan, Z.: Linear maps on \(\star \)-algebras acting on orthogonal elements like derivations or anti-derivations. Filomat 13, 4543–4554 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ghahramani, H., Sattari, S.: Characterization of reflexive closure of some operator algebras acting on Hilbert \(C^{*}\)-modules. Acta Math. Hung. 157, 158–172 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hou, J., Zhang, X.: Ring isomorphisms and linear or additive maps preserving zero products on nest algebras. Linear Algebra Appl. 387, 343–360 (2004)

    Article  MathSciNet  Google Scholar 

  14. Jabeen, A.: Lie (Jordan) centralizers on generalized matrix algebras. Commun. Algebra 49, 278–291 (2020)

    Article  MathSciNet  Google Scholar 

  15. Jacobson, N.: Lie Algebras. Interscience Publishers, New York (1962)

    MATH  Google Scholar 

  16. Ji, P., Qi, W.: Characterizations of Lie derivations of triangular algebras. Linear Algebra Appl. 435, 1137–1146 (2011)

    Article  MathSciNet  Google Scholar 

  17. Ji, P., Qi, W., Sun, X.: Characterizations of Lie derivations of factor von Neumann algebras. Linear Multilinear Algebra 61, 417–428 (2013)

    Article  MathSciNet  Google Scholar 

  18. Jia, H., **ao, Z.: Commuting maps on certain incidence algebras. Bull. Iran. Math. Soc. 46, 755–765 (2020)

    Article  MathSciNet  Google Scholar 

  19. Johnson, B.E.: An introduction to the theory of centralizers. Proc. Lond. Math. Soc. 14, 299–320 (1964)

    Article  MathSciNet  Google Scholar 

  20. Li, P., Han, D., Tang, W.: Centralizers and Jordan derivations for CSL subalgebras of von Neumann algebras. J. Oper. Theorey 69, 117–133 (2013)

    Article  MathSciNet  Google Scholar 

  21. Liu, L.: Characterization of centralizers on nest subalgebras of von Neumann algebras by local action. Linear Multilinear Algebra 64, 383–392 (2016)

    Article  MathSciNet  Google Scholar 

  22. Liu, L.: On nonlinear Lie centralizers of generalized matrix algebras. Linear Multilinear Algebra (2020). https://doi.org/10.1080/03081087.2020.1810605

    Article  Google Scholar 

  23. Lu, F., **g, W.: Characterizations of Lie derivations of B(X). Linear Algebra Appl. 432, 89–99 (2010)

    Article  MathSciNet  Google Scholar 

  24. McCrimmon, K.: A Taste of Jordan Algebras. Springer, New York (2004)

    MATH  Google Scholar 

  25. Spanoudakis, N.K.: Generalization of certain nest algebras results. Proc. Am. Math. Soc. 115, 711–723 (1992)

    Article  MathSciNet  Google Scholar 

  26. Vukman, J.: Identities related to derivations and centralizers on standard operator algebras. Taiwan. J. Math. 11, 255–265 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Wei, Q., Li, P.: Centralizers of \({\cal{J}}\)-subspace lattice algebras. Linear Algebra Appl. 426, 228–237 (2007)

    Article  MathSciNet  Google Scholar 

  28. **s of generalized matrix algebras. Linear Algebra Appl. 433, 2178–2197 (2010)

    Article  MathSciNet  Google Scholar 

  29. Zalar, B.: On centralizers of semiprime rings. Comment. Math. Univ. Carol. 32, 609–614 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for valuable suggestions that improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoger Ghahramani.

Additional information

Communicated by Dragana Cvetkovic Ilic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahramani, H., **g, W. Lie centralizers at zero products on a class of operator algebras. Ann. Funct. Anal. 12, 34 (2021). https://doi.org/10.1007/s43034-021-00123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00123-y

Keywords

Mathematics Subject Classification

Navigation