Log in

Utilization of KASP technology for wheat improvement

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Hundreds of experiments involving genoty** and phenoty** of the plants are planned daily by plant researchers worldwide for wheat improvement. There are a plethora of molecular markers available that are being widely used in wheat genetic studies but have their own limitations. Developments in the areas of next-generation sequencing and bioinformatics applications have aided in the development of SNP-based markers. SNP-based assays have revolutionized the method of genoty** as these consume less time and have high accuracy and effectiveness. Among the SNP genoty** platforms, kompetitive allele-specific PCR (KASP) assay is a promising technology for high throughput SNP genoty** which is based on the fluorescence resonance energy transfer (FRET) method. KASP genoty** mainly involves two allele-specific forward primers, one common reverse primer and FRET cassettes which results in the identification of respective alleles having a particular SNP or InDel. It is playing a significant role in performing various genetic studies such as genetic diversity analysis, genome-wide association studies and marker assisted selection in wheat. In this review, for the first time, we attempt to give an overview of the KASP assays developed for various biotic and abiotic stresses, agronomic, physiological and quality traits for wheat improvement and the assays developed for genetic diversity analysis and genoty** by sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abhinandan K, Skori L, Stanic M, Hickerson NMN, Jamshed M, Samuel MA (2018) Abiotic stress signaling in wheat—an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front Plant Sci 9:734. https://doi.org/10.3389/fpls.2018.00734

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Scopes G (2017) Characterization of a wheat breeders’ array suitable for high throughput SNP genoty** of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J 15:390–401

    CAS  Google Scholar 

  • Al-Othman ZA, Ali R, Al-Othman AM, Ali J, Habila MA (2016) Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources. Arab J Chem 9:1555–1562

    Google Scholar 

  • Babiker EM, Gordon TC, Chao S, Newcomb M, Rouse MN, ** Y, Bonman JM (2015) Map** resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor Appl Genet 128:605–612. https://doi.org/10.1007/s00122-015-24566

    Article  CAS  Google Scholar 

  • Babiker EM, Gordon TC, Chao S, Rouse MN, Wanyera R, Acevedo M, Bonman JM (2017) Molecular map** of stem rust resistance loci effective against the Ug99 race group of the stem rust pathogen and validation of a single nucleotide polymorphism marker linked to stem rust resistance gene Sr28. Phytopathology 107:208–215. https://doi.org/10.1094/PHYTO-08-16-0294-R

    Article  CAS  Google Scholar 

  • Bac-Molenaar JA, Vreugdenhil D, Granier C, Keurentjes JJ (2015) Genome-wide association map** of growth dynamics detects time-specific and general quantitative trait loci. J Exp Bot 66:5567–5580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagge M, **a X, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216

    CAS  Google Scholar 

  • Burow G, Chopra R, Hughes H, **n Z, Burke J (2019) Marker assisted selection in sorghum using KASP assay for the detection of single nucleotide polymorphism/insertion deletion. In: Sorghum. Humana Press, New York, pp 75–84

  • Cabral AL, Jordan MC, McCartney CA, You FM, Humphreys DG, MacLachlan R, Pozniak CJ (2014) Identification of candidate genes, regions and markers for pre harvest sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Biol 14:340. https://doi.org/10.1186/s12870-014-0340-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Liang X, Zhao H, Feng B, Xu E, Wang L, Hu Y (2019) Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta 250:1967–1981

    CAS  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, See D (2013) Genome wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110(8057):8062

    Google Scholar 

  • Chen X, Sullivan PF (2003) Single nucleotide polymorphism genoty**: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96

    Google Scholar 

  • Cockram J, Scuderi A, Barber T, Furuki E, Gardner KA, Gosman N, Mackay IJ (2015) Fine-map** the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population. G3(Bethesda) 5:2257–2266. https://doi.org/10.1534/g3.115.021584

    Article  Google Scholar 

  • Comastri A, Janni M, Simmonds J, Uauy C, Pignone D, Nguyen HT, Marmiroli N (2018) Heat in wheat: exploit reverse genetic techniques to discover new alleles within the Triticum durum sHsp26 family. Front Plant Sci 9:1337. https://doi.org/10.3389/fpls.2018.01337

    Article  PubMed  PubMed Central  Google Scholar 

  • Cubizolles N, Rey E, Choulet F, Rimbert H, Laugier C, Balfourier F, Gielen J (2016) Exploiting the repetitive fraction of the wheat genome for high-throughput single nucleotide polymorphism discovery and genoty**. Plant Genome 9:1–11

    CAS  Google Scholar 

  • Daba SD, Tyagi P, Brown-Guedira G, Mohammadi M (2018) Genome-wide association studies to identify loci and candidate genes controlling kernel weight and length in a historical United States wheat population. Front Plant Sci 9:1045. https://doi.org/10.3389/fpls.2018.01045

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM, Behlke MA, Walder JA (2011) RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol 11:80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Downie RC, Bouvet L, Furuki E, Gosman N, Gardner KA, Mackay IJ, Cockram J (2018) Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-map** the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front Plant Sci 9:881. https://doi.org/10.3389/fpls.2018.00881

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreisigacker S, Wang X, Martinez Cisneros BA, **g R, Singh PK (2015) Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Theor Appl Genet 128:2317–2329. https://doi.org/10.1007/s00122-015-2587-9

    Article  CAS  Google Scholar 

  • Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157:417–430

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genoty**-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emebiri LC, Tan MK, El-Bouhssini M, Wildman O, Jighly A, Tadesse W, Ogbonnaya FC (2017) QTL map** identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage. Theor Appl Genet 130:309–318. https://doi.org/10.1007/s00122-016-2812-1

    Article  CAS  Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Galver L (2003) Highly parallel SNP genoty**. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 69–78

  • Gaudet M, Fara AG, Beritognolo I, Sabatti M (2009) Allele-specific PCR in SNP genoty**. Method Mol Biol 578:415–424

    CAS  Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) molecular map** of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis 103:1166–1171. https://doi.org/10.1094/PDIS-06-18-1055-RE

    Article  CAS  Google Scholar 

  • Grewal S, Hubbart-Edwards S, Yang C, Scholefield D, Ashling S, Burridge A, Wilkinson PA (2018a) Detection of T. urartu introgressions in wheat and development of a panel of interspecific introgression lines. Front Plant Sci 9:1565

    PubMed  PubMed Central  Google Scholar 

  • Grewal S, Yang C, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP (2018b) Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor Appl Genet 131:389–406

    CAS  Google Scholar 

  • Grewal S, Hubbart-Edwards S, Yang C, Devi U, Baker L, Heath J, King J (2019) Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genoty** assays. Plant Biotechnol J. https://doi.org/10.1111/pbi.13241

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2013) Array-based high-throughput DNA markers and genoty** platforms for cereal genetics and genomics. Cereal genomics II. Springer, Dordrecht, pp 11–55

    Google Scholar 

  • György A, Tóth B, Óvári J, Cseuz L (2016) Population structure and genetic association studies in wheat. Rev Agric Rural Dev 5:44–47

    Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genoty**-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    PubMed  PubMed Central  Google Scholar 

  • Huang XQ, Röder MS (2005) Development of SNP assays for genoty** the puroindoline b gene for grain hardness in wheat using pyrosequencing. J Agric Food Chem 53:2070–2075

    CAS  Google Scholar 

  • Huang B, Qi F, Sun Z, Miao L, Zhang Z, Liu H, Fang Y, Dong W, Tang F, Zheng Z, Zhang X (2019) Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breed Sci 69:234–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Cregan PB (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genom 11:38

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) The physical science basis. In: Contribution of the working group I: climate change 2007. Cambridge Press, Cambridge, pp 3–6

  • Jatayev S, Kurishbayev A, Zotova L, Khasanova G, Serikbay D, Zhubatkanov A, Langridge P (2017) Advantages of Amplifluor-like SNP markers over KASP in plant genoty**. BMC Plant Biol 17:254

    PubMed  PubMed Central  Google Scholar 

  • Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Kong L (2020) A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol 69:249–258

    CAS  Google Scholar 

  • Kajla M, Yadav VK, Khokhar J, Singh S, Chhokar RS, Meena RP, Sharma RK (2015) Increase in wheat production through management of abiotic stresses: a review. J Appl Natl Sci 7:1070–1080

    CAS  Google Scholar 

  • Kassa MT, You FM, Hiebert CW, Pozniak CJ, Fobert PR, Sharpe AG, McCartney CA (2017) Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biol 17:45. https://doi.org/10.1186/s12870-0170993-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalid M, Afzal F, Gul A, Amir R, Subhani A, Ahmed Z, He Z (2019) Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Front Plant Sci 10:717. https://doi.org/10.3389/fpls.2019.00717

    Article  PubMed  PubMed Central  Google Scholar 

  • King J, Grewal S, Yang CY, Hubbart S, Scholefield D, Ashling S, Edwards KJ (2017) A step change in the transfer of interspecific variation into wheat from Ambylopyrum muticum. Plant Biotechnol J 15:217–226

    CAS  Google Scholar 

  • King J, Grewal S, Yang CY, Hubbart Edwards S, Scholefield D, Ashling S, Harper JA (2018) Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann Bot 121:229–240

    CAS  Google Scholar 

  • Kolmer JA, Bernardo A, Bai G, Hayden MJ, Anderson JA (2019) Thatcher wheat line RL6149 carries Lr64 and a second leaf rust resistance gene on chromosome 1DS. Theor Appl Genet 132:2809–2814

    CAS  Google Scholar 

  • Körmöczi P, Tóth B, Nagy-György A, Kocsis K, Óvári J, Szabó BP, Cseuz L (2019) SNP-based genetic diversity assessment among hungarian bread wheat (Triticum aestivum L.) genotypes. Cereal Res Commun 48:1–7

    Google Scholar 

  • Kumpatla SP, Buyyarapu R, Abdurakhmonov IY, Mammadov JA (2012) Genomics assisted plant breeding in the 21st century: technological advances and progress. In: Abdurakhmonov I (ed) Plant breeding. InTech Publishers, Crotia

    Google Scholar 

  • Li Z, Yuan C, Herrera-Foessel S, Randhawa MS, Huerta-Espino J, Liu D, Lan C (2019) Four consistent loci confer adult plant resistance to leaf rust in the durum wheat lines Heller#1 and Dunkler. Phytopathology. https://doi.org/10.1094/PHYTO-09-190348-R

    Article  Google Scholar 

  • Liu Y, He Z, Appels R, **a X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10

    CAS  Google Scholar 

  • Liu S, Sehgal SK, Lin M, Li J, Trick HN, Gill BS, Bai G (2015) Independent mis splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication. New Phytol 208(3):928–935. https://doi.org/10.1111/nph.13489

    Article  CAS  Google Scholar 

  • Liu J, Xu Z, Fan X, Zhou Q, Cao J, Wang F, Wang T (2018) A genome-wide association study of wheat spike related traits in China. Front Plant Sci 9:1584

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Qie Y, Li X, Wang M, Chen X (2020) Genome-wide map** of quantitative trait loci conferring all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat landrace PI 181410. Int J Mol Sci 21:478

    CAS  Google Scholar 

  • Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2017) An innovative SNP genoty** method adapting to multiple platforms and throughputs. Theor Appl Genet 130:597–607

    CAS  Google Scholar 

  • Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Lan X (2019a) Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet 132:3155–3167. https://doi.org/10.1007/s00122-019-03415-z

    Article  CAS  Google Scholar 

  • Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Lan X (2019b) Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield related traits. Theor Appl Genet. https://doi.org/10.1007/s00122-019-03458-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Zhang H, Li S, Zou Y, Li T, Liu J, Lan X (2019c) Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet 20:77

    PubMed  PubMed Central  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    CAS  Google Scholar 

  • Mu J, Huang S, Liu S, Zeng Q, Dai M, Wang Q, Han D (2019a) Genetic architecture of wheat stripe rust resistance revealed by combining QTL map** using SNP based genetic maps and bulked segregant analysis. Theor Appl Genet 132(443):55. https://doi.org/10.1007/s00122-018-3231-2

    Article  CAS  Google Scholar 

  • Mu J, Wu J, Liu S, Dai M, Sun D, Huang S, Han D (2019b) Genome-wide linkage map** reveals stripe rust resistance in common wheat (Triticum aestivum) **nong1376. Plant Dis 103:2742–2750. https://doi.org/10.1094/PDIS-12-18-2264-RE

    Article  CAS  Google Scholar 

  • Muleta KT, Rouse MN, Rynearson S, Chen X, Buta BG, Pumphrey MO (2017) Characterization of molecular diversity and genome-wide map** of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions. BMC Plant Biol 17:134

    PubMed  PubMed Central  Google Scholar 

  • Muqaddasi QH, Brassac J, Koppolu R, Plieske J, Ganal MW, Roder MS (2019) TaAPO A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci Rep 9:138–153

    Google Scholar 

  • Neelam K, Brown-Guedira G, Huang L (2013) Development and validation of a breeder friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol Breed 31(233):237

    Google Scholar 

  • Ni Z, Li H, Zhao Y, Peng H, Hu Z, **n M, Sun Q (2018) Genetic improvement of heat tolerance in wheat: recent progress in understanding the underlying molecular mechanisms. Crop J 6:32–41

    Google Scholar 

  • Nirmala J, Chao S, Olivera P, Babiker EM, Abeyo B, Tadesse Z, Rouse MN (2016) Markers linked to wheat stem rust resistance gene Sr11 effective to Puccinia graminis f. sp. tritici race TKTTF. Phytopathology 106:1352–1358. https://doi.org/10.1094/PHYTO-04-16-0165-R

    Article  CAS  Google Scholar 

  • Nsabiyera V, Bariana HS, Qureshi N, Wong D, Hayden MJ, Bansal UK (2018) Characterisation and map** of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet 131:1459–1467. https://doi.org/10.1007/s00122-018-3090-x

    Article  CAS  Google Scholar 

  • Oerke EC, Dehne HW (1994) Estimated crop losses in wheat. Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam, pp 179–296

    Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to biotic stresses. Plant Genomics. https://doi.org/10.5772/64351

    Article  Google Scholar 

  • Paakeerathan K, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U (2019) Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132:3169–3176. https://doi.org/10.1007/s00122-019-03416-y

    Article  CAS  Google Scholar 

  • Pasquariello M, Ham J, Burt C, Jahier J, Paillard S, Uauy C, Nicholson P (2017) The eyespot resistance genes Pch1 and Pch2 of wheat are not homoeoloci. Theor Appl Genet 130:91–107. https://doi.org/10.1007/s00122-016-2796-x

    Article  CAS  Google Scholar 

  • Phillips C, Lareu M, Sanchez J, Brion M, Sobrino B, Morling N, Schneider P, Syndercombe Court D, Carracedo A (2004) Selecting single nucleotide polymorphisms for forensic applications. Int Congr Ser 1261:18–20

    CAS  Google Scholar 

  • Priya BN, Reddy TV, Chidanand U, Saiprasad GV (2019) Development of KASP marker for cytoplasmic male sterility in Nicotiana tabacum and utilization in trait introgression. J genet 98:79

    Google Scholar 

  • Qureshi N, Bariana H, Kumran VV, Muruga S, Forrest KL, Hayden MJ, Bansal U (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131(1091):1098. https://doi.org/10.1007/s00122018-3060-3

    Article  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    CAS  Google Scholar 

  • Ragoussis J (2006) Genoty** technologies for all. Drug Discov Today Technol 3(115):122

    Google Scholar 

  • Rahman MS, Linsell KJ, Taylor JD, Hayden MJ, Collins NC, Oldach KH (2019) Fine map** of root lesion nematode (Pratylenchus thornei) resistance loci on chromosomes 6D and 2B of wheat. Theor Appl Genet. https://doi.org/10.1007/s0012201903495-x

    Article  Google Scholar 

  • Rane J, Pannu RK, Sohu VS, Saini RS, Mishra B, Shoran J, Crossa J, Vargas M, Joshi AK (2007) Performance of yield and stability of advanced wheat genotypes under heat stress environments of the Indo-Gangetic Plains. Crop Sci 47(1561):1573

    Google Scholar 

  • Rasheed A, Wen W, Gao F, Zhai S, ** H, Liu J, He Z (2016) Development andvalidation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860. https://doi.org/10.1007/s00122-016-2743-x

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Le Gouis J (2018) High-throughput SNP discovery and genoty** in hexaploid wheat. PLoS ONE 13:e0186329

    PubMed  PubMed Central  Google Scholar 

  • Roncallo PF, Beaufort V, Larsen AO, Dreisigacker S, Echenique V (2019) Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. PLoS ONE 14:e0218562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saini DK, Devi P, Kaushik P (2020) Advances in genomic interventions for wheat biofortification: a review. Agronomy 10:62

    CAS  Google Scholar 

  • Salsman E, Kumar A, AbuHammad W, Abbasabadi AO, Dobrydina M, Chao S, Elias EM (2018) Development and validation of molecular markers for grain cadmium in durum wheat. Mol Breed 38:28

    Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439

    Google Scholar 

  • Schlotterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genoty** using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    CAS  Google Scholar 

  • Shao M, Bai G, Rife TW, Poland J, Lin M, Liu S, Zhang G (2018) QTL map** of pre harvest sprouting resistance in a white wheat cultivar Danby. Theor Appl Genet 131:1683–1697. https://doi.org/10.1007/s00122-018-3107-5

    Article  Google Scholar 

  • Sharma I, Tyagi BS, Singh G, Venkatesh K, Gupta OP (2015) Enhancing wheat production—a global perspective. Indian J Agril Sci 85:3–13

    Google Scholar 

  • Sieber AN, Longin CF, Leiser WL, Wurschum T (2016) Copy number variation of CBF A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat. Theor Appl Genet 129:1087–1097. https://doi.org/10.1007/s00122-016-2685-3

    Article  CAS  Google Scholar 

  • Singh L, Anderson JA, Chen J, Gill BS, Tiwari VK, Rawat N (2019) Development and validation of a Perfect KASP marker for fusarium head blight resistance gene Fhb1 in wheat. Plant Pathol J 35:200–207. https://doi.org/10.5423/PPJ.OA.01.2019.0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Maughan PJ (2015) SNP genoty** using KASPar assays. Plant genoty**. Humana Press, New York, pp 11–55

    Google Scholar 

  • Statista (2019) http://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/#data

  • Steele KA, Quinton-Tulloch MJ, Amgai RB, Dhakal R, Khatiwada SP, Vyas D, Heine M, Witcombe JR (2018) Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. Mol Breed 38:38

    PubMed  PubMed Central  Google Scholar 

  • Steemers FJ, Gunderson KL (2007) Whole genome genoty** technologies on the BeadArray™ platform. Biotechnol J 2:41–49

    CAS  Google Scholar 

  • Sydenham SL, Barnard A (2018) Targeted haplotype comparisons between south african wheat cultivars appear predictive of pre-harvest sprouting tolerance. Front Plant Sci 9:63

    PubMed  PubMed Central  Google Scholar 

  • Tabone T, Mather DE, Hayden MJ (2009) Temperature switch PCR (TSP): robust assay design for reliable amplification and genoty** of SNPs. BMC Genom 10:580. https://doi.org/10.3389/fpls.2018.00063

    Article  Google Scholar 

  • Tan MK, El-Bouhssini M, Emebiri L, Wildman O, Tadesse W, Ogbonnaya FC (2015) A SNP marker for the selection of HfrDrd, a Hessian fly-response gene in heat. Mol Breed 35:216

    Google Scholar 

  • Tan CT, Assanga S, Zhang G, Rudd JC, Haley SD, Xue Q, Fuentealba MP (2017a) Development and validation of KASP markers for wheat streak mosaic virus resistance gene Wsm2. Crop Sci 57:340–349

    CAS  Google Scholar 

  • Tan CT, Yu H, Yang Y, Xu X, Chen M, Rudd JC, Liu S (2017b) Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet 130(9):1867–1888. https://doi.org/10.1007/s00122-017-2930-4

    Article  CAS  PubMed  Google Scholar 

  • Thielert H, Schüpphaus K, inventors (2006) Uhde GmbH, assignee. Waste-heat boiler for a Clause plant. United States patent US 7036461

  • Thomson MJ (2014) High-throughput SNP genoty** to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Google Scholar 

  • Tiwari V, Mamrutha HM, Sareen S, Sheoran S, Tiwari R, Sharma P, Rane J (2017) Managing abiotic stresses in wheat. Abiotic stress management for resilient agriculture. Springer, Singapore, pp 313–337

    Google Scholar 

  • Ur-Rehman S, Wang J, Chang X, Zhang X, Mao X, **g R (2019) A wheat protein kinase gene TaSnRK2.9-5A associated with yield contributing traits. Theor Appl Genet 132:907–919. https://doi.org/10.1007/s00122-018-3247-7

    Article  CAS  Google Scholar 

  • Wang N, Li F, Chen B, Xu K, Yan G, Qiao J, King GJ (2014) Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet 127:1817–1829

    Google Scholar 

  • Wang R, Liu Y, Isham K, Zhao W, Wheeler J, Klassen N, Chen J (2018) QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol Breed 38:135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Gordon T, Hole D, Zhao W, Isham K, Bonman JM, Chen J (2019) Identification and assessment of two major QTLs for dwarf bunt resistance in winter wheat line ‘IDO835’. Theor Appl Genet 132:2755–2766. https://doi.org/10.1007/s00122-019-03385-2

    Article  CAS  Google Scholar 

  • Wei W, Min X, Shan S, Jiang H, Cao J, Li L, Si H (2019) Isolation and characterization of TaQsd1 genes for period of dormancy in common wheat (Triticum aestivum L.). Mol Breed 39:150

    CAS  Google Scholar 

  • Woodward J (2014) Bi-allelic SNP genoty** using the TaqMan® assay. Crop breeding. Humana Press, New York, pp 67–74

    Google Scholar 

  • Wu J, Wang Q, Liu S, Huang S, Mu J, Zeng Q, Kang Z (2017) Saturation map** of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genoty** arrays. Front Plant Sci 8:653. https://doi.org/10.1094/PHYTO-04-17-0153-R

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Kang Z (2018a) Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high throughput SNP array genoty** of pooled extremes. Theor Appl Genet 131:43–58. https://doi.org/10.1007/s00122-017-2984-3

    Article  CAS  Google Scholar 

  • Wu J, Wang Q, Xu L, Chen X, Li B, Mu J, Kang Z (2018b) Combining single nucleotide polymorphism genoty** array with bulked segregant analysis to map a gene controlling adult plant resistance to stripe rust in wheat line 03031 1–5 H62. Phytopathology 108:103–113

    CAS  Google Scholar 

  • Yang Z, Chen Z, Peng Z, Yu Y, Liao M, Wei S (2017) Development of a high-density linkage map and map** of the three-pistil gene (Pis1) in wheat using GBS markers. BMC Genomics 18:567. https://doi.org/10.1007/s00122-018-3189-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, McDonald MC, Solomon PS, Milgate AW (2018) Genetic map** of Stb19, a new resistance gene to Zymoseptoria tritici in wheat. Theor Appl Genet 131:2765–2773. https://doi.org/10.1007/s00122-019-03511-0

    Article  CAS  Google Scholar 

  • Yang J, Zhou Y, Wu Q, Chen Y, Zhang P, Zhang Y, Cao T (2019a) Molecular characterization of a novel TaGL3–5A allele and its association with grain length in wheat (Triticum aestivum L.). Theor Appl Genet 132:1799–1814. https://doi.org/10.1007/s00122-019-03316-1

    Article  CAS  Google Scholar 

  • Yang J, Zhou Y, Zhang Y, Hu W, Wu Q, Chen Y, Zhao H (2019b) Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genet 20:98. https://doi.org/10.1186/s12863-0190800-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhao D, Meng Z, Xu K, Yan J, ** for grain yield-related traits in bread wheat via SNP-based selective genoty**. Theor Appl Genet. https://doi.org/10.1007/s00122-019-03511-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi X, Jiang Z, Hu W, Zhao Y, Bie T, Gao D, Zhang Y (2017) Development of a kompetitive allele-specific PCR marker for selection of the mutated Wx-D1d allele in wheat breeding. Plant Breed 136:460–466

    CAS  Google Scholar 

  • Yu LX, Chao S, Singh RP, Sorrells ME (2017) Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat. PLoS ONE. https://doi.org/10.1371/journal.pone.0171963

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Wu J, Liu S, Huang S, Wang Q, Mu J, Kang Z (2019) A major QTL co localized on chromosome 6BL and its epistatic interaction for enhanced wheat stripe rust resistance. Theor Appl Genet 132:1409–1424. https://doi.org/10.1007/s00122-019-03288-2

    Article  CAS  Google Scholar 

  • Zhang P, Li X, Gebrewahid TW, Liu H, ** of adult-plant resistance to leaf and stripe rust in wheat cross SW 8588/Thatcher using the wheat 55K SNP array. Plant Dis 103:3041–3049. https://doi.org/10.1094/PDIS-0219-0380-RE

    Article  CAS  Google Scholar 

  • Zhao J, Abdelsalam NR, Khalaf L, Chuang WP, Zhao L, Smith CM, Bai G (2019a) Development of single nucleotide polymorphism markers for the wheat curl mite resistance gene Cmc4. Crop Sci 59:1567–1575

    CAS  Google Scholar 

  • Zhao J, Wang Z, Liu H, Zhao J, Li T, Hou J, Hao C (2019b) Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century. BMC Plant Biol 19:5. https://doi.org/10.1186/s12870-0181612-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavjot Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Mavi, G.S., Gill, M.S. et al. Utilization of KASP technology for wheat improvement. CEREAL RESEARCH COMMUNICATIONS 48, 409–421 (2020). https://doi.org/10.1007/s42976-020-00057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-020-00057-6

Keywords

Navigation