Log in

Estimation of lateritic soils elastic modulus from CBR index for pavement engineering in Burkina Faso

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Pavement design with some soils, such as lateritic soils, is still a “real challenge” in some countries. In the tropical countries guide, recommended for Burkina Faso, the pavement design is performed according to the class of traffic and the soil bearing capacity, characterized by the soaked CBR index (Californian Bearing Ratio). In practice, the validation of pavement structures is possible using numerical models requiring the thickness, the Poisson’s ratio and the elastic modulus of the pavement’s layer materials, as input data for the stresses and the strain calculation. Until now, the guides provide none value of the modulus for the lateritic soils. So, the modulus is estimated by assimilating the lateritic soils to untreated coarse gravels (or GNT: Graves Non Traitées in the French guideline) with known modulus or by using empirical correlations based on the soaked CBR index. This approach lead to an erroneous estimating of modulus of lateritic soils, and to an under or overdesign of pavement structures, due to the fact that the specific correlation suitable for these soils in Burkina Faso is not known. So, this paper was interested in the characterization of lateritic soils from Burkina Faso, according to their CBR bearing capacity, their elastic modulus and to their compaction parameters, after having been assured that the selected soils were representative of country’s road soils. The objective is to perform a specific model for estimating the elastic modulus of these soils. Analysis of the studied parameters showed that CBR and elastic modulus, both depend on moisture content and dry unit weight of soils. A correlation was thus performed between elastic modulus and CBR index. The specific correlation obtained is in power form: E= a.CBRb and relatively close to whose obtained by Green and Hall, where a=66.50 and b=0.526.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AASHTO:

American Association of State Highway and Transportation Officials

a, b and c :

Coefficients depending on the nature of soils

AFNOR:

Association Française de Normalisation

CBR:

Californian Bearing Ratio (unsoaked CBR)

CBRs:

Californian Bearing Ratio (soaked CBR)

CEBTP:

Centre Expérimental de recherches et d’études du Bâtiment et des Travaux Publics

CSIR:

Council of Scientific and Industrial Research

D MAX :

Maximum diameter of soils

E:

Young modulus of soils

ε :

Strain of samples

E Oed :

Oedometric modulus

ε v :

Vertical strain of samples

γ d :

Dry unit weight of soils

ε d-MAX :

Maximum dry unit weight of modified Proctor

GNT:

Graves Non Traitées

GTR:

Guide de Terrassement Routier

HRB:

High Research Board

IFSTTAR:

Institut français des sciences et technologies des transports, de l’aménagement et des réseaux

MP:

Modified Proctor

ν :

Poisson’s ratio

NFP:

Normes Françaises

OMC:

Optimum Moisture Content

PI:

Plasticity index

σ :

Stress of soils

SETRA:

Service d’études technique, des routes et autoroutes

σ ϖ :

Vertical stress of soils

TRRL:

Transport and Road Research Laboratory

US:

United State

USA:

United State of America

W:

Moisture content

References

  1. S. I. K. Ampadu, P. Ackah, F. O. Nimo, F. Boadu, A laboratory study of horizontal confinement effect on the Dynamic Cone Penetration Index of a lateritic soil, Transp. Geotech. 3 (106) (2016) 32.

    Google Scholar 

  2. J. C. de Carvalho, L. R. de Rezende, F. B. da F. Cardoso, L. C. de FL Lucena, R. C. Guimarães, et Y. G. Valencia, Tropical soils for highway construction: Peculiarities and considerations, Transp. Geotech. 5 (2015) 3–19.

    Article  Google Scholar 

  3. CEBTP, Guide pratique de dimensionnement des chaussées pour les pays tropicaux, 1984e éd. Centre Expérimental de Recherches et d’Etudes du Bâtiment et des Travaux Publics [Pratical guide of pavement design for tropical countries, 1984 th ed. Experimental Center of Recherche and Studies on Building and Public Works], Paris, France, 1984.

  4. A. Dione, M. Fall, Y. Berthaud, M. Bâ, Estimation of Resilient Modulus of Unbound Granular Materials from Senegal (West Africa), Sci. Res. 3 (2013) 172–178.

    Google Scholar 

  5. S. Muthu Lakshmi, M. Ragapriya, K. Sindhoora, N. Udhayatharini, Establishment of Correlation bween CBR and Resilient Modulus of Subgrade, Inter. J. Civ. Eng. 6 (5) (2019) 44–49.

    Article  Google Scholar 

  6. SRA-IFSTTAR, Guide Technique pour la realisation des remblais des couches de forme, fascicule I, principes généraux [Technical guide for subgrade embankment realization, booklet I, general principles] 2000 th ed., Technical Studies Service of Roads and Highways/French Institut of Sciences and Technologies for Transport and management of Networks, Paris, France, 2000, p 166.

  7. W. Witczak, W. Mirza, Use of Non linear Subgrade Modulus in AASHTO Design Procedure, J. Transp. Eng. 121 (3) (1995) 273–282.

    Article  Google Scholar 

  8. J. Puppala, Estimating Stiffness of Subgrade and Unbound Materials for Pavement Design, Synthesis of Highway Practice, Transportation Research Board (TRB), Washington DC, USA, 2008.

    Google Scholar 

  9. J. L. Green, J. W. Hall, Non destructive vibratory testing of airport pavements, Experimental test results and development of evaluation mhodology and procedure, Army engineer waterways experiment station vicksburg MS, Volume 1. ADA017511. 209, Transport and Road Research Laboratory (TRRL), Wokingham, Berkshire, UK, 1975.

    Google Scholar 

  10. B. Sutumaran, V. Kyatham, Suitability of Using California Bearing Rato test to predict Resilient Modulus, Rowan University, NJ, USA, Vol. 9, 2004.

    Google Scholar 

  11. E. R. Kumar Shrestha, Correlation bween modulus of resilience and CBR value of Trishuli river sand, Government of Nepal, Nepal, Vol. 7, 2013.

    Google Scholar 

  12. E. Putri, N. S. V. Kameswara Rao, M. A. Mannan, Evaluation of Modulus of Elasticity and Modulus of Subgrade Reaction of Soils Using CBR Test, Journal of Civil Engineering Research, 2 (1) (2012) 34–40.

    Article  Google Scholar 

  13. S. Erlingsson, On Forecasting the Resilient Modulus from the CBR Value of Granular Bases, Road Mater. Pavement Des. 8 (4) (2007) 783–797.

    Article  Google Scholar 

  14. A. Dione, M. Fall, Y. Berthaud, F. Benboudjema, A. Michou, Implementation of Resilient Modulus- CBR relationship in Mechanistic Empirical (M. -E) Pavement Design, Sciences Appliquées de l’Ingénieur 1 (2) (2014) 65–71.

    Google Scholar 

  15. G. L. Ming Leung, A. W. Gun Wong, Y. Hong Wang, Prediction of resilient modulus of compacted saprolitic soils by CBR approach for road pavement subgrade: a reexamination, Inter. J. Pavement Eng. 14 (4) (2013) 16 https://doi.org/10.1080/10298436.2012.727993.

    Google Scholar 

  16. Y. Qian, J. Han, S. K. Pokharel, R. L. Parsons, Dermination of Resilient Modulus of Subgrade Using Cyclic Plate Loading Tests, Geo-Frontiers & ASCE 9 (2011) 4743–4751.

    Google Scholar 

  17. C. Mendoza B. Caicedo, Elastoplastic framework of relationships bween CBR and Young’s modulus for granular material, Road Mater. Pavement Des. 19 (8) (2018) 1796–1815.

    Article  Google Scholar 

  18. W. Heukelom, C. R. Foster, Dynamic testing of pavements Journal of the soil Mechanics and Foundations division 86.1 (1960): 1–28.

    Google Scholar 

  19. W. Heukelom A. Klomp, Dynamic Testing as a means of controling pavements during and after construction, International Conference on the Structural Design of Asphalt Pavements, Transportation Research Board (TRB), MI, USA, Vol. 203, no. 1, 1962.

    Google Scholar 

  20. W. D. Powell, J. F. Potter, H. C. Mayhew, M. E. Nunn, The structural design of bituminous roads, 1984.

  21. S. K. Shukla, N. Sivakugan, Site investigation and in situ tests, In: Das, Braja M., (ed.) Geotechnical Engineering Handbook, J. Ross Publishing, Fort Lauderdale, FL, USA, 2011, p. 10–l to 10–78.

    Google Scholar 

  22. J. M. Duncan, A. L. Buchignami, An engineering manual for stlement studies, Department of Civil Engineering, University of California, Berkeley, USA, 1976.

    Google Scholar 

  23. S. Thiaw, Dimensionnement mécanistique-empirique des structures de chaussée: application au tronçon Séo-Diourbel, Ecole Polytechnique de Thiès [Mechanistic-empirical design of pavement structures: application to the Séo-Diourbel road’s section], Polytechnic School of Thiès, Cheikh Anta Diop University, Engineering dissertation, Thiès, Senegal, 2006.

  24. American Association of State Highway and Transportation Officials, Guide for Design of Pavement Structures, 1993e éd. 1. AASHTO, Washington DC, USA, 1993.

    Google Scholar 

  25. G. Jeuffroy, Conception construction des chaussées: Les matériaux, les matériels, les techniques d’exécution des travaux [pavement design and construction. Materials, machines and construction techniques], 4e éd., 2, Eyrolles, France, 1967.

  26. Y. Gansonré, Contribution à la mise en place d’une chaine qualité pour la conception, la réalisation la gestion des infrastructures routières au Burkina Faso, Thèse, Université Clermont Auvergne, Clermont Ferrand, 2018.

  27. American Association for State Highway and Transportation Officials, Soils and materials classification system, AASHTO, Washington DC, USA, 1945.

    Google Scholar 

  28. Rodrigues al, Proposta de classificaçao universal para solos lateriticos [Proposition of universal classification for lateritic soils], Technology and Natural Ressources Center, 2010.

  29. Corps of Engineers, The Unified Soil Classification System, US Army, USA, 1960.

    Google Scholar 

  30. L. Chaigneau, Caractérisation des milieux granulaires de surface à l’aide d’un pénétromètre [Characterization of granular surface media using a penetrometer], (Thesis), Blaise Pascal University, Clermont II, Clermont Ferrand, France, 2001.

    Google Scholar 

  31. G. Sanglerat, G. Olivari, B. Cambou, Pratical problems in soil mechanics and foundation engineering, 1, 34A, 1 Elsevier, Amsterdam, Nerland, 1984.

    MATH  Google Scholar 

  32. R. R. Angelim, R. P. Cunha, M. M. Sales, Dermining the Elastic Deformation Modulus From a Compacted Earth Embankment Via Laboratory and Ménard Pressuremer Tests, Soil and Rocks, Sao Paulo, Brasil, 2016, pp. 285–300.

    Google Scholar 

  33. Ampadu, A Laboratory Investigation into the Effect of Water Content on the CBR of a Subgrade soil, Springer proceeding in Physics, T. Schanz, laboratory of soil mechanics, Brazilian Association for Soil Mechanics and Geotechnical Engineering (ABMS) and Portuguese Geotechnical Society (SPG), Germany, 2007.

  34. F. Herrera, R. Espinace, J. Palma, Innovative Technologies for the Control of Soil Compaction: review of the State of the Art and Experiences in Chile, Geotecnia Ambiental and Ponfificia Universidad Catolica de Valparaiso, Valparaiso, Chile, 2015.

  35. J. Kodikara, T. Islam, A. Sounthararajah, Review of soil compaction: History and recent developments, Transp. Geotech. 17 (2018) 24–34.

    Article  Google Scholar 

  36. Y. M. Purwana, H. Nikraz, The Correlation bween the CBR and Shear Strength in Unsaturated Soil Conditions, Transp. Geotech. 1 (3) (2013) 211–222.

    Google Scholar 

  37. F. Tatsuoka, A. G. Correia, Importance of Controlling the Degree of Saturation in Soil Compaction linked to Soil Structure Design, Transp. Geotech. 17 (2018) 3–23.

    Article  Google Scholar 

  38. K. Terzaghi, Theorical soil mechanics, 2nd éd. TA710, T4. John Wiley & Sons, NY, USA, 1943.

    Book  Google Scholar 

  39. D. G. Toll, California Bearing Ratio tests on a lateritic gravel from Kenya, Transp. Geotech. 5 (2015) 59–67.

    Article  Google Scholar 

  40. L. Chaigneau, R. Gourvès, C. Bacconn, Penration test coupled with a geotechnical classification for compaction control, Melbourne, Australia, 2000.

  41. Y. Gansonré, Breul, C. Bacconn, M. Benz, R. Gourvès, Prediction of in-situ dry unit weight considering chamber boundary effects on lateritic soils using Panda® penromer, Inter. J. Geotech. Eng. (2019) https://doi.org/10.1080/19386362.2019.1698211.

  42. D. Llanca-Vergas Breul, C. Bacconn, Modulus Estimation of Surrounding Soils of Underground Structures in Service, ASTM Inter. 38 (4) (2015) 452–460 https://doi.org/10.1520/GTJ20140154.

    Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to express their acknowledgement to many institutions and companies from Burkina Faso and France, as Institut Pascal, Cerema the “Conseil General” of Puy de Dôme in France, the Ministry of Infrastructure, the National Public Works Laboratory and Sogea Satom in Burkina Faso and many persons for their participation in data collection, testing and advices in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassia Gansonré.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gansonré, Y., Breul, P., Bacconnet, C. et al. Estimation of lateritic soils elastic modulus from CBR index for pavement engineering in Burkina Faso. Int. J. Pavement Res. Technol. 14, 348–356 (2021). https://doi.org/10.1007/s42947-020-0118-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0118-9

Keywords

Navigation