Log in

Antimicrobial effects of sophorolipid in combination with lactic acid against poultry-relevant isolates

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the antibacterial effect of sophorolipid in combination with lactic acid against relevant bacteria isolated from the poultry industry. Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli were isolated from chicken meat and antibacterial tests with sophorolipid and lactic acid were performed. Checkerboard, time-kill, and scanning electron microscopy analyses were used to confirm the antibacterial action and the combined effects. Although no inhibitory effects were observed for E. coli and Salmonella, these compounds presented antibacterial activity against L. monocytogenes and S. aureus. Additionally, sophorolipid and lactic acid were not cytotoxic at the concentrations used in the tests. The combination of sophorolipid and lactic acid resulted in an additive interaction, reducing the concentration of the active compounds needed for effectiveness against S. aureus and L. monocytogenes, to 50% and 75%, respectively. These findings lead to the possibility of develo** a new, sustainable, and natural antimicrobial solution that is considered noncytotoxic and has wide applicability in the poultry industry to reduce substantial losses in this sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Venkitanarayanan K, Thakur S, Ricke SC (2019) Food safety in poultry meat production. Springer International Publishing, Griffith

    Book  Google Scholar 

  2. World Health Organization (2015) WHO estimates of the global burden of foodborne diseases: Foodborne Disease Burden Epidemiology. Reference Group 2007–2015. World Health Organization, Geneva

  3. Rouger A, Tresse O, Zagorec M (2017) Bacterial contaminants of poultry meat : sources, species and dynamics. Microorganisms 5:E50. https://doi.org/10.3390/microorganisms5030050

  4. Zhang X, Ashby RD, Solaiman DKY, Liu Y, Fan X (2017) Antimicrobial activity and inactivation mechanism of lactonic and free acid sophorolipids against Escherichia coli O157:H7. Biocatal Agric Biotechnol 11:176–182. https://doi.org/10.1016/j.bcab.2017.07.002

    Article  CAS  Google Scholar 

  5. Mahami T, Togby-Tetteh W, Kottoh DI, Amoakoah-Twum L, Gasu E, Annan SNY, Larbi D, Adjei I, Adu-Gyamfi A (2019) Microbial food safety risk to humans associated with poultry feed: the role of irradiation. Int J Food Sci 19:6915736. https://doi.org/10.1155/2019/6915736

  6. Chen SH, Fegan N, Kocharunchitt C, Bowman JP, Duffy LL (2020) Effect of peracetic acid on Campylobacter in food matrices mimicking commercial poultry processing. Food Control 113:107185. https://doi.org/10.1016/j.foodcont.2020.107185

    Article  CAS  Google Scholar 

  7. Kataria J, Morey A (2020) Antimicrobial interventions in poultry processing to improve shelf life and safety of poultry meat: a review with special attention to Salmonella spp. J Food Qual Hazards Control 7:52–59. https://doi.org/10.18502/jfqhc.7.2.2884

    Article  CAS  Google Scholar 

  8. Moye ZD, Das CR, Tokman JI, Fanelli B, Karathia H, Hasan NA, Marek PJ, Senecal AG, Sulakvelidze A (2020) Treatment of fresh produce with a Salmonella-targeted bacteriophage cocktail is compatible with chlorine or peracetic acid and more consistently preserves the microbial community on produce. J Food Saf 40:e12763. https://doi.org/10.1111/jfs.12763

    Article  Google Scholar 

  9. Micciche AC, Feye KM, Rubinelli PM, Wages JA, Knueven CJ, Ricke SC (2018) The implementation and food safety issues associated with poultry processing reuse water for conventional poultry production systems in the United States. Front Sustain Food Syst 2:70. https://doi.org/10.3389/fsufs.2018.00070

    Article  Google Scholar 

  10. Aidara-Kane A, Angulo FJ, Conly J, Minato Y, Silbergeld EK, Mcewen SA, Collignon PJ (2018) World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob Resist Infect Control 7:1–8. https://doi.org/10.1186/s13756-017-0294-9

    Article  Google Scholar 

  11. Zhang X, Ashby R, Solaiman D, Uknalis J, Fan X (2016) Inactivation of Salmonella spp. and Listeria spp. by palmitic, stearic, and oleic acid sophorolipids and thiamine dilauryl sulfate. Front Microbiol 7:2076. https://doi.org/10.3389/fmicb.2016.02076

    Article  PubMed  PubMed Central  Google Scholar 

  12. Valotteau C, Banat IM, Mitchell CA, Lydon H, Marchant R, Babonneau F, Pradier CM, Baccile N, Humblot V (2017) Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids Surf B 157:325–334. https://doi.org/10.1016/j.colsurfb.2017.05.072

    Article  CAS  Google Scholar 

  13. Olanya OM, Ukuku DO, Solaiman DKY, Ashby RD, Niemira BA, Mukhopadhyay S (2018) Reduction in Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in vitro and on tomato by sophorolipid and sanitiser as affected by temperature and storage time. Int J Food Sci Technol 53:1303–1315. https://doi.org/10.1111/ijfs.13711

    Article  CAS  Google Scholar 

  14. Silveira VAI, Queiroz CAU, Celligoi MAPC (2018) Antimicrobial applications of sophorolipid from Candida bombicola: a promising alternative to conventional drugs. J Appl Biol Biotechnol 6:87–90. https://doi.org/10.7324/JABB.2018.60614

    Article  CAS  Google Scholar 

  15. Naughton PJ, Marchant R, Naughton V, Banat IM (2019) Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 127:12–28. https://doi.org/10.1111/jam.14243

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Liu X, Fu S, An Z, Feng Y, Wang R, Ji P (2020) Effects of sophorolipids on fungal and oomycete pathogens in relation to pH solubility. J Appl Microbiol 128:1754–1763. https://doi.org/10.1111/jam.14594

    Article  CAS  PubMed  Google Scholar 

  17. Mani-López E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721. https://doi.org/10.1016/j.foodres.2011.04.043

    Article  CAS  Google Scholar 

  18. Dubal ZB, Paturkar AM, Waskar VS, Zende RJ, Latha C, Rawool DB, Kadam MM (2004) Effect of food grade organic acids on inoculated S. aureus, L. monocytogenes, E. coli and S. Typhimurium in sheep/goat meat stored at refrigeration temperature. Meat Sci 66:817–821. https://doi.org/10.1016/j.meatsci.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  19. Stanojević-Nikolić S, Dimić G, Mojović L, Pe** J, Djukić-Vuković A, Kocić-Tanackov S (2016) Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J Food Process Pres 40:990–998. https://doi.org/10.1111/jfpp.12679

    Article  CAS  Google Scholar 

  20. Silveira VAI, Nishio EK, Queiroz CAU, Amador IR, Kobayashi RKT, Caretta TO, Macedo F, Celligoi MAPC (2019) Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatal Agric Biotechnol 21:101287. https://doi.org/10.1016/j.bcab.2019.101287

    Article  Google Scholar 

  21. Joshi-Navare K, Prabhune A (2013) A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BioMed Res Int 512495:1–8. https://doi.org/10.1155/2013/512495

    Article  CAS  Google Scholar 

  22. Sen S, Borah SN, Bora A, Deka S (2017) Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Fact 16:95. https://doi.org/10.1186/s12934-017-0711-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elshikh M, Moya-Ramírez I, Moens H, Roelants S, Soetaert W, Marchant R, Banat IM (2017) Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol 123:1111–1123. https://doi.org/10.1111/jam.13550

    Article  CAS  PubMed  Google Scholar 

  24. International Organization for Standardization (2017) Microbiology of the food chain- Horizontal method for the detection and enumeration of Listeria monocytogenes and other Listeria spp.-Part 1: detection method; International Standard; ISO 1129–1, 2017, International Organization for Standardization, Geneva

  25. International Organization for Standardization (2017) Microbiology of the food chain and animal feeding stuffs – Horizontal method for the detection, enumeration and seroty** of Salmonella - Part 1: detection of Salmonella spp.; International Standard; ISO 6579, 2017, International Organization for Standardization, Geneva

  26. International Organization for Standardization (2001) Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli - Part 2: colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide; International Standard; ISO 16649–2, 2001, International Organization for Standardization, Geneva

  27. International Organization for Standardization (2003) Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coagulase-positive Staphylococci (Staphylococcus aureus and other species). Part 3: detection and MPN technique for low numbers; International Standard; ISO 6888–3, 2003, International Organization for Standardization, Geneva

  28. Fontoura ICC, Saikawa GIA, Silveira VAI, Pan NC, Amador IR, Baldo C, Rocha SPD, Celligoi MAPC (2020) Antibacterial activity of sophorolipids from Candida bombicola against human pathogens. Braz Arch Biol Technol 63:e20180568. https://doi.org/10.1590/1678-4324-2020180568

    Article  CAS  Google Scholar 

  29. Clinical and Laboratory Standards Institute CLSI (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M07-A9); approved standard — ninth edition. CLSI, Wayne. https://doi.org/10.4103/0976-237X.91790

    Book  Google Scholar 

  30. Traub WH, Kleber I (1975) In vitro additive effect of polymyxin B and rifampin against Serratia marcescens. Antimicrob Agents Chemother 7:874–876. https://doi.org/10.1128/aac.7.6.874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chin NX, Weitzman I, Della-Latta P (1997) In vitro activity of fluvastatin, a cholesterol-lowering agent, and synergy with fluconazole and itraconazole against Candida species and Cryptococcus neoformans. Antimicrob Agents Chemother 41:850–852

    Article  CAS  Google Scholar 

  32. National Committee for Clinical Laboratory Standards NCCLS (1999) Methods for determining bactericidal activity of antimicrobial agents; approved guideline (M26-A). CLSI, Wayne (19(18))

    Google Scholar 

  33. Scandorieiro S, Camargo LC, Lancheros CAC, Yamada-Ogatta SF, Nakamura CV, Oliveira AG, Andrade CGTJ, Duran N, Nakazato G, Kobayashi RKT (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol 7:760. https://doi.org/10.3389/fmicb.2016.00760

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aquino I, Tsuboy MS, Marcarini JC, Mantovani MS, Perazzo FF, Maistro EL (2013) Genotoxic evaluation of the antimalarial drugs artemisinin and artesunate in human HepG2 cells and effects on CASP3 and SOD1 gene expressions. Genet Mol Res 12:2517–2527. https://doi.org/10.4238/2013.July.24.6

    Article  CAS  PubMed  Google Scholar 

  35. Solaiman DKY, Ashby RD, Uknalis J (2017) Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay. J Microbiol Methods 136:21–29. https://doi.org/10.1016/j.mimet.2017.02.012

    Article  CAS  PubMed  Google Scholar 

  36. Kim K, Dalsoo Y, Youngbum K, Baekseok L, Doonhoon S, Eun-Ki K (2002) Characteristics of sophorolipid as an antimicrobial agent. J Microbiol Biotechnol 12:235–241

    CAS  Google Scholar 

  37. Dengle-Pulate V, Chandorkar P, Bhagwat S, Prabhune AA (2013) Antimicrobial and SEM studies of sophorolipids synthesized using lauryl alcohol. J Surfactants Deterg 17:543–552. https://doi.org/10.1007/s11743-013-1495-8

    Article  CAS  Google Scholar 

  38. Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, Ribeiro IAC (2016) Can sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm 513:697–708. https://doi.org/10.1016/j.ijpharm.2016.09.074

    Article  CAS  PubMed  Google Scholar 

  39. Valotteau C, Calers C, Casale S, Berton J, Stevens CV, Babonneau F, Pradier CM, Humblot V, Baccile N (2015) Biocidal properties of a glycosylated surface: sophorolipids on Au(111). ACS Appl Mater Interfaces 7:18086–18095. https://doi.org/10.1021/acsami.5b05090

    Article  CAS  PubMed  Google Scholar 

  40. Diaz de Rienzo MA, Stevenson PS, Marchant R, Banat IM (2015) Antibacterial properties of biosurfactants against selected Gram positive and negative bacteria. FEMS Microbiol Lett 363:ID fnv224. https://doi.org/10.1093/femsle/fnv224

  41. Hoa NLH, Loan LQ, Eun-Ki K, Ha TT, Duy ND, Khanh HQ, Dung NH (2017) Production and characterization of sophorolipids produced by Candida bombicola using sugarcane molasses and coconut oil. Asia Pac J Sci Technol 22. https://doi.org/10.14456/apst.2017.11

  42. Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34. https://doi.org/10.1007/s00253-007-0988-7

    Article  CAS  PubMed  Google Scholar 

  43. Dubey P, Selvaraj K, Prabhune A (2013) Sophorolipids: in self assembly and nanomaterial synthesis. World J Pharm Pharm Sci 2:1107–1133

    CAS  Google Scholar 

  44. Ricke S (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci 82:632–639. https://doi.org/10.1093/ps/82.4.632

    Article  CAS  Google Scholar 

  45. Mohamed HMH, Abdel-Naeem HHS (2018) Enhancing the bactericidal efficacy of lactic acid against Salmonella typhimurium attached to chicken skin by sodium dodecyl sulphate addition. LWT - Food Sci Technol 87:464–469. https://doi.org/10.1016/j.lwt.2017.09.022

    Article  CAS  Google Scholar 

  46. Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes Gram-negative bacteria by disrupting the outer membrane. Appl Environ Microb 66:2001–2005. https://doi.org/10.1128/aem.66.5.2001-2005.2000

    Article  CAS  Google Scholar 

  47. Chen J, Song X, Zhang H, Qu Y (2006) Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme Microb Technol 39:501–506. https://doi.org/10.1016/j.enzmictec.2005.12.022

    Article  CAS  Google Scholar 

  48. Rashad MM, Nooman MU, Ali MM, Mahmoud AE (2014) Production, characterization and anticancer activity of Candida bombicola sophorolipids by means of solid state fermentation of sunflower oil cake and soybean oil. Grasas Aceites 65:1–11. https://doi.org/10.3989/gya.098413

    Article  CAS  Google Scholar 

  49. Dubey P, Raina P, Prabhune A, Kaul-Ghanekar R (2016) Cetyl alcohol and oleic acid sophorolipids exhibit anticancer activity. Int J Pharm Pharm Sci 8:399–402

    CAS  Google Scholar 

  50. Li H, Guo W, Ma X, Li J, Song X (2017) In vitro and in vivo anticancer activity of sophorolipids to human cervical cancer. Appl Biochem Biotechnol 181:1372–1387. https://doi.org/10.1007/s12010-016-2290-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Victória Akemi Itakura Silveira: conceptualization, formal analysis, investigation, methodology, visualization, writing—original draft preparation, writing—review & editing. Renata Katsuko Takayama Kobayashi: conceptualization, methodology, resources, writing—review & editing. Admilton Gonçalves de Oliveira Junior: conceptualization, methodology, resources, writing—review & editing. Mario Sérgio Mantovani: conceptualization, methodology, resources, writing—review & editing. Gerson Nakazato: conceptualization, methodology, resources, writing—review & editing. Maria Antonia Pedrine Colabone Celligoi: conceptualization, funding acquisition, methodology, project administration, resources, supervision, writing—review & editing.

Corresponding author

Correspondence to Maria Antonia Pedrine Colabone Celligoi.

Ethics declarations

Ethics approval

This study was approved by the Human Ethics Committee of State University of Londrina (CAAE 47661115.0.0000.5231, No. 1.268.019).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Elaine Cristina Pereira de Martinis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, V.A.I., Kobayashi, R.K.T., de Oliveira Junior, A.G. et al. Antimicrobial effects of sophorolipid in combination with lactic acid against poultry-relevant isolates. Braz J Microbiol 52, 1769–1778 (2021). https://doi.org/10.1007/s42770-021-00545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00545-9

Keywords

Navigation