Log in

Liquid Metal Fibers

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Liquid metal (LM) is a type of metal or alloy that has a low melting point near room temperature and exhibits the properties of both liquids and metals. Such unconventional materials have been gaining increasing attention within the scientific and industrial communities. Recently, fiber-shaped LM and its composites have especially attracted diverse interest owing to their unique merits, such as excellent conductivity, intrinsic stretchability, facile phase transition, and the ability to be woven or knitted into smart fabrics. This review is dedicated to summarizing different aspects of LM-based fibers, such as their material components, fabrication and design strategies, and remarkable applications by way of their representative properties. Typical fabrication approaches, such as 3D printing of pure LM wire, coating the LM shell on the surface of the fiber, injecting a LM core into hollow fibers, and spinning of LM and polymer hybrids have been comparatively illustrated. Moreover, emerging applications that primarily utilize LM fibers have been demonstrated. Finally, future directions and opportunities in the field are discussed. This categorization of LM fibers is expected to facilitate further investigation and practice in the coming society.

Graphical Abstract

TOC: Schematic illustration of liquid metal fibers and their fabrication technologies: 3D printing, coating of liquid metal on fibers, injection of liquid metal into hollow fibers, spinning of LM composites. Liquid metal fibers can be applied as stretchable electronics, smart clothing, health monitoring, electrical switches, and shape memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright of © 2014 Sci. Rep. b SEM images of LM ultrafine wires with kinked, bent patterns, and 3D structures [92]. Reproduced with permission of Ref. 92, Copyright of © 2019 Sci. Adv

Fig. 4

Copyright of © 2020 ACS Appl. Mater. Interfaces. Schematic for the c design of a flexible electronic system [47]. Reproduced with permission of Ref.47, Copyright of © 2021 ACS Nano. d The fabrication process of LM based superelastic conductors [96], Reproduced with permission of Ref. 96, Copyright of © 2021 Adv. Funct. Mater. and e multilayer LM-coated fiber [60]. Reproduced with permission of Ref.60, Copyright of © 2021 ACS Appl. Mater. Interfaces

Fig. 5

Copyright of © 2021 Adv. Energy. Mater. b Schematic diagram for the coaxial wet spinning process for fabricating the LM composite core–shell fibers. c Microscopic images of LMF and human hair. d SEM images of the external surface of LMF and e Knotted microfiber. f The cross-sectional SEM image of LMF. [44] Reproduced with permission of Ref. 44, Copyright of © 2021 Sci. Adv

Fig. 6

Copyright of © 2020 Appl. Mater. Today. Reproduced with permission of Ref.102, Copyright of © 2019 ACS Appl. Mater. Interfaces

Fig. 7

Copyright of ©2020 Nat. Commun. b A triangular liquid metal stretchable fiber is integrated in a stretchable fabric, which is connected with a custom pulse generator. Pressure on the LMF can be quantified and localized simultaneously from the reflection waveforms. [13] Reproduced with permission of Ref. 13, Copyright of ©2020 Nat. Electron. c Two twisted fibers with LM core capable of sensing the torsion, stretching, and touching by detecting the capacitance change. [36] Reproduced with permission of Ref. 36, Copyright of © 2017 Adv. Funct. Mater

Fig. 8
Fig. 9

Copyright of © 2019 Biosens. Bioelectron. d Schematic and e image of a variable-stiffness fiber (VSF) with an LM core, silicone encapsulation, and a conductive wire. f Tunable stiffness of a VSF controlled by temperature change. g Prototype of VSF-based finger splint, which can be assembled into the fabric with cotton filament. [10] Reproduced with permission of Ref. 10, Copyright of © 2016 Adv. Mater. h A deployable mesh antenna with programming and recovering process changing the phase of LM between liquid and solid [118]. Reproduced with permission of Ref. 118, Copyright of © 2018 Addit. Manuf

Similar content being viewed by others

References

  1. Zhu M, Kikutani T, Liu T, Ramakrishna S, Tao G. Fiber changes our life. Adv Fiber Mater 2019;1:1.

    Article  CAS  Google Scholar 

  2. Jia C, Xu Z, Luo D, **ang H, Zhu M. Flexible ceramic fibers: Recent development in preparation and application. Adv Fiber Mater 2022. https://doi.org/10.1007/s42765-022-00133-y .

    Article  Google Scholar 

  3. Song J, Chen S, Sun L, Guo Y, Zhang L, Wang S, Xuan H, Guan Q, You Z. Mechanically and electronically robust transparent organohydrogel fibers. Adv Mater 2020;32:1906994.

    Article  CAS  Google Scholar 

  4. Wang C, Li X, Gao E, Jian M, **a K, Wang Q, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 2016;28:6640–8.

    Article  CAS  Google Scholar 

  5. Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 2015;27:2433–9.

    Article  CAS  Google Scholar 

  6. Zhang L, Liu Z, Wu X, Guan Q, Chen S, Sun L, Guo Y, et al. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv Mater 2019;31:1901402.

    Article  Google Scholar 

  7. Wang Y, Niu W, Lo CY, Zhao Y, He X, Zhang G, et al. Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv Funct Mater 2020;30:2000356.

    Article  CAS  Google Scholar 

  8. Wang L, Zhang F, Liu Y, Leng J. Shape memory polymer fibers: materials, structures, and applications. Adv Fiber Mater 2021;4:1–19.

    Google Scholar 

  9. Tung WS, Daoud WA. Self-cleaning fibers via nanotechnology: a virtual reality. J Mater Chem 2011;21:7858–69.

    Article  CAS  Google Scholar 

  10. Tonazzini A, Mintchev S, Schubert B, Mazzolai B, Shintake J, Floreano D. Variable stiffness fiber with self-healing capability. Adv Mater 2016;28:10142–8.

    Article  CAS  Google Scholar 

  11. Wu Y, Zhen R, Liu H, Liu S, Deng Z, Wang P, et al. Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J Mater Chem C 2017;5:12483–91.

    Article  CAS  Google Scholar 

  12. Ou M, Qiu W, Huang K, Feng H, Chu S. Ultrastretchable liquid metal electrical conductors built-in cloth fiber networks for wearable electronics. ACS Appl Mater Interfaces 2019;12:7673–8.

    Article  Google Scholar 

  13. Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron 2020;3:316–26.

    Article  Google Scholar 

  14. Liu H, **n Y, Lou Y, Peng Y, Wei L, Zhang J. Liquid metal gradient fibers with reversible thermal programmability. Mater Horiz 2020;7:2141–9.

    Article  CAS  Google Scholar 

  15. Zhu S, So JH, Mays R, Desai S, Barnes WR, Pourdeyhimi B, Dickey MD. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 2013;23:2308–14.

    Article  CAS  Google Scholar 

  16. **ong Y, **ao J, Chen J, Xu D, Zhao S, Chen S, et al. A multifunctional hollow TPU fiber filled with liquid metal exhibiting fast electrothermal deformation and recovery. Soft Matter 2021;17:10016–24.

    Article  CAS  Google Scholar 

  17. Yang Y, Sun N, Wen Z, Cheng P, Zheng H, Shao H, et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018;12:2027–34.

    Article  CAS  Google Scholar 

  18. Schermer RT, Villarruel CA, Bucholtz F, McLaughlin CV. Reconfigurable liquid metal fiber-optic mirror for continuous, widely-tunable true-time-delay. Opt Express 2013;21:2741–7.

    Article  CAS  Google Scholar 

  19. Liu J, Yang Y, Deng ZS. A composite fabric containing liquid metal. China Patent. 2010, CN201010219755.2. http://www1.soopat.com/Patent/CN102296405A. Accessed 28 Dec 2011

  20. Li G, Wu X, Lee D-W. Selectively plated stretchable liquid metal wires for transparent electronics. Sens Actuators B 2015;221:1114–9.

    Article  CAS  Google Scholar 

  21. Duan M, Ren Y, Sun X, Zhu X, Wang X, Sheng L, Liu J. EGaIn fiber enabled highly flexible supercapacitors[J]. ACS Omega 2021;6:24444–9.

    Article  CAS  Google Scholar 

  22. Tang SY, Khoshmanesh K, Sivan V, Petersen P, O’Mullane AP, Abbott D, Mitchell A, Kalantar-Zadeh K. Liquid metal enabled pump. PNAS 2014;111:3304.

    Article  CAS  Google Scholar 

  23. Wang D, Wang X, Rao W. Precise regulation of Ga-based liquid metal oxidation. Acc Mater Res 2021;2:1093–103.

    Article  CAS  Google Scholar 

  24. Cao L, Yu D, **a Z, Wan H, Liu C, Yin T, He Z. Ferromagnetic liquid metal plasticine with transformed shape and reconfigurable polarity. Adv Mater 2020;32:2070136.

    Article  Google Scholar 

  25. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518–33.

    Article  CAS  Google Scholar 

  26. Daeneke T, Khoshmanesh K, Mahmood N, De Castro IA, Esrafilzadeh D, Barrow S, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 2018;47:4073–111.

    Article  CAS  Google Scholar 

  27. Zhao X, Xu S, Liu J. Surface tension of liquid metal: role, mechanism and application. Front Energy 2017;11:535–67.

    Article  Google Scholar 

  28. Zhu L, Wang B, Handschuh-Wang S, Zhou X. Liquid metal–based soft microfluidics. Small 2020;16:1903841.

    Article  CAS  Google Scholar 

  29. Zheng Y, He ZZ, Yang J, Liu J. Direct desktop printed-circuits-on-paper flexible electronics. Sci. Rep 2013;3:1–7.

    Article  Google Scholar 

  30. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 2012;7:e45485.

    Article  CAS  Google Scholar 

  31. Zheng Y, He Z, Yang J, Liu J. Personal electronics printing via tap** mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep 2014;4:4588.

    Article  Google Scholar 

  32. Gui H, Tan S, Wang Q, Yu Y, Liu F, Lin J, et al. Spraying printing of liquid metal electronics on various clothes to compose wearable functional device. Sci China: Technol Sci 2017;60:306–16.

    Article  Google Scholar 

  33. Chen G, Wang H, Guo R, Duan M, Zhang Y, Liu J. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics. ACS Appl Mater Interfaces 2020;12:6112–8.

    Article  Google Scholar 

  34. Guo R, Wang H, Chen G, Yuan B, Zhang Y, Liu J. Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding. Appl Mater Today 2020;20:100738.

    Article  Google Scholar 

  35. Zhang Q, Roach DJ, Geng L, Chen H, Qi HJ, Fang D. Highly stretchable and conductive fibers enabled by liquid metal dip-coating. Smart Mater Struct 2018;27:035019.

    Article  Google Scholar 

  36. Cooper CB, Arutselvan K, Liu Y, Armstrong D, Lin Y, Khan MR, Genzer J, Dickey MD. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv Funct Mater 2017;27:1605630.

    Article  Google Scholar 

  37. Yu R, Guo J, Ma N, Zhang D, Zhao Y. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics. Sci Bull 2020;65:1752–9.

    Article  CAS  Google Scholar 

  38. Lin Y, Gordon O, Khan MR, Vasquez N, Genzer J, Dickey MD. Vacuum filling of complex microchannels with liquid metal. Lab Chip 2017;17:3043–50.

    Article  CAS  Google Scholar 

  39. Wang H, Yao Y, He Z, Rao W, Hu L, Chen S, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater 2019;31:1901337.

    Article  Google Scholar 

  40. Tang L, Cheng S, Zhang L, Mi H, Mou L, Yang S, et al. Printable metal-polymer conductors for highly stretchable bio-devices. iScience 2018;4:302–11.

    Article  CAS  Google Scholar 

  41. Majidi C, Alizadeh K, Ohm Y, Silva A, Tavakoli M. Liquid metal polymer composites: from printed stretchable circuits to soft actuators. Flex Print Electron 2022;7:013002.

    Article  Google Scholar 

  42. Wang X, Liu X, Bi P, Zhang Y, Li L, Guo J, Hu L, et al. Electrochemically enabled embedded three-dimensional printing of freestanding gallium wire-like structures. ACS Appl Mater Interfaces 2020;12:53966–72.

    Article  CAS  Google Scholar 

  43. **n Y, Peng H, Xu J, Zhang J. Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv Funct Mater 2019;29:1808989.

    Article  Google Scholar 

  44. Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv 2021;7:eabg4041.

    Article  CAS  Google Scholar 

  45. Sha Z, Boyer C, Li G, Yu Y, Allioux F-M, Kalantar-Zadeh K, et al. Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance. Nano Energy 2022;92:106713.

    Article  CAS  Google Scholar 

  46. Qi X, Zhao H, Wang L, Sun F, Ye X, Zhang X, Tian M, Qu L. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem Eng J 2022;437:135382.

    Article  CAS  Google Scholar 

  47. Wang M, Ma C, Uzabakiriho PC, Chen X, Chen Z, Cheng Y, Wang Z, Zhao G. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano 2021;15:19364–76.

    Article  CAS  Google Scholar 

  48. Lai YC, Lu HW, Wu HM, Zhang D, Yang J, Ma J, et al. Elastic multifunctional liquid–metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv Energy Mater 2021;11:2100411.

    Article  CAS  Google Scholar 

  49. Cho D, Bhuyan P, Sin D, Kim H, Kim E, Park S. Stretchable, soft, and variable stiffness elastomer foam with positive and negative piezoresistivity enabled by liquid metal inclusion. Adv Mater Technol 2021;7:2101092.

    Article  Google Scholar 

  50. Yao Y, Wang H, Yang X, Liu J. E-BiInSn enhanced rigidity alterable artificial bandage. EMBC, IEEE. 2018, 2873–6. https://doi.org/10.1109/EMBC.2018.8512906.

  51. Ma J, Dong H, He ZZ. Electrochemically enabled manipulation of gallium-based liquid metals within porous copper. Mater Horiz 2018;5:675.

    Article  CAS  Google Scholar 

  52. Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep 2014;4:1–8.

    Google Scholar 

  53. Wu J, Tang SY, Fang T, Li W, Li X, Zhang S. A wheeled robot driven by a liquid-metal droplet. Adv Mater 2018;30:1805039.

    Article  Google Scholar 

  54. Lide DR. CRC handbook of chemistry and physics. USA: CRC Press; 2004.

    Google Scholar 

  55. Wang X, Guo R, Liu J. Liquid metal based soft robotics: materials, designs, and applications. Adv Mater Technol 2019;4:1800549.

    Article  Google Scholar 

  56. Ma K, Liu J. Liquid metal cooling in thermal management of computer chips. Front Energy Power Eng China 2007;1:384–402.

    Article  Google Scholar 

  57. Guo R, Sun X, Yao S, Duan M, Wang H, Liu J, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol 2019;4:1900183.

    Article  CAS  Google Scholar 

  58. **ang S, Liu D, Jiang C, Zhou W, Ling D, Zheng W, et al. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv Funct Mater 2021;31:2100940.

    Article  CAS  Google Scholar 

  59. Kim M-G, Brown DK, Brand O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat Commun 2020;11:1–11.

    Google Scholar 

  60. Zhou N, Jiang B, He X, Li Y, Ma Z, Zhang H, et al. A superstretchable and ultrastable liquid metal–elastomer wire for soft electronic devices. ACS Appl Mater Interfaces 2021;13:19254–62.

    Article  CAS  Google Scholar 

  61. Zhang M, Zhang P, Zhang C, Wang Y, Chang H, Rao W. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl Mater Today 2020;19:100612.

    Article  Google Scholar 

  62. Park YG, Lee GY, Jang J, Yun SM, Kim E, Park JU. Liquid metal-based soft electronics for wearable healthcare. Adv Healthcare Mater 2021;10:2002280.

    Article  CAS  Google Scholar 

  63. Gao YX, Liu J. Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 2012;107:701–8.

    Article  CAS  Google Scholar 

  64. Farrell ZJ, Tabor C. Control of gallium oxide growth on liquid metal eutectic gallium/indium nanoparticles via thiolation. Langmuir 2018;34:234–40.

    Article  CAS  Google Scholar 

  65. Chang H, Zhang P, Guo R, Cui Y, Hou Y, Sun Z, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl Mater Interfaces 2020;12:14125–35.

    Article  CAS  Google Scholar 

  66. Tang J, Zhao X, Li J, Zhou Y, Liu J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv Sci 2017;4:1700024.

    Article  Google Scholar 

  67. Li F, Shu J, Zhang L, Yang N, **e J, Li X, et al. Liquid metal droplet robot. Appl Mater Today 2020;19:100597.

    Article  Google Scholar 

  68. Hu L, Wang H, Wang X, Liu X, Guo J, Liu J. Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl Mater Interfaces 2019;11:8685–92.

    Article  CAS  Google Scholar 

  69. Kong W, Wang Z, Wang M, Manning KC, Uppal A, Green MD, et al. Oxide-mediated formation of chemically stable tungsten–liquid metal mixtures for enhanced thermal interfaces. Adv Mater 2019;31:1904309.

    Article  CAS  Google Scholar 

  70. Carle F, Bai K, Casara J, Vanderlick K, Brown E. Development of magnetic liquid metal suspensions for magnetohydrodynamics. Phys Rev Fluids 2017;2:013301.

    Article  Google Scholar 

  71. **ao Y, Ding Y, Lei J, Fu L. Bubble-induced in situ property modulation of liquid metal. Adv Mater Interfaces 2021;8:2002204.

    Article  CAS  Google Scholar 

  72. Tang SY, Qiao R, Lin Y, Li Y, Zhao Q, Yuan D, et al. Functional liquid metal nanoparticles produced by liquid-based nebulization. Adv Mater Technol 2019;4:1800420.

    Article  Google Scholar 

  73. Yan J, Zhang X, Liu Y, Ye Y, Yu J, Chen Q, et al. Shape-controlled synthesis of liquid metal nanodroplets for photothermal therapy. Nano Res 2019;12:1313–20.

    Article  CAS  Google Scholar 

  74. Li X, Li M, Shou Q, Zhou L, Ge A, Pei D, et al. Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites. Adv Mater 2020;32:2003553.

    Article  CAS  Google Scholar 

  75. Zhang J, Yao Y, Sheng L, Liu J. Self-fueled biomimetic liquid metal mollusk. Adv Mater 2015;27:2648–55.

    Article  CAS  Google Scholar 

  76. Liang ST, Wang HZ, Liu J. Progress, Mechanisms and applications of liquid-metal catalyst systems. Chem-Eur J 2018;24:17616–26.

    Article  CAS  Google Scholar 

  77. Chen S, Yang X, Cui Y, Liu J. Self-growing and serpentine locomotion of liquid metal induced by copper ions. ACS Appl Mater Interfaces 2018;10:22889–95.

    Article  CAS  Google Scholar 

  78. Khan H, Mahmood N, Zavabeti A, Elbourne A, Rahman M, Zhang BY, et al. Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nat Commun 2020;11:1–8.

    Article  Google Scholar 

  79. Mayyas M, Li H, Kumar P, Ghasemian MB, Yang J, Wang Y, et al. Liquid-metal-templated synthesis of 2D graphitic materials at room temperature. Adv Mater 2020;32:2001997.

    Article  CAS  Google Scholar 

  80. Ren L, Xu X, Du Y, Kalantar-Zadeh K, Dou SX. Liquid metals and their hybrids as stimulus–responsive smart materials. Mater Today 2020;34:92–114.

    Article  CAS  Google Scholar 

  81. Zhu L, Chen Y, Shang W, Handschuh-Wang S, Zhou X, Gan T, et al. Anisotropic liquid metal–elastomer composites. J Mater Chem C 2019;7:10166–72.

    Article  CAS  Google Scholar 

  82. Wen X, Wang B, Huang S, Lee M-S, Chung P-S, Chow YT, et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens Bioelectron 2019;131:37–45.

    Article  CAS  Google Scholar 

  83. Yuan B, Zhao C, Sun X, Liu J. Liquid-metal-enhanced wire mesh as a stiffness variable material for making soft robotics. Adv Eng Mater 2019;21:1900530.

    Article  Google Scholar 

  84. Rich S, Jang SH, Park YL, Majidi C. Liquid metal-conductive thermoplastic elastomer integration for low-voltage stiffness tuning. Adv Mater Technol 2017;2:1700179.

    Article  Google Scholar 

  85. Bhuyan P, Wei Y, Sin D, Yu J, Nah C, Jeong K-U, et al. Soft and stretchable liquid metal composites with shape memory and healable conductivity. ACS Appl Mater Interfaces 2021;13:28916–24.

    Article  CAS  Google Scholar 

  86. Chang BS, Tutika R, Cutinho J, Oyola-Reynoso S, Chen J, Bartlett MD, et al. Mechanically triggered composite stiffness tuning through thermodynamic relaxation (ST3R). Mater Horiz 2018;5:416–22.

    Article  CAS  Google Scholar 

  87. Liu J, Yi L. Liquid metal biomaterials. Berlin: Springer; 2018.

    Book  Google Scholar 

  88. Chechetka SA, Yu Y, Zhen X, Pramanik M, Pu K, Miyako E. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun 2017;8:1–19.

    Article  Google Scholar 

  89. Sun X, Yuan B, Sheng L, Rao W, Liu J. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today 2020;20:100722.

    Article  Google Scholar 

  90. Buchanan C, Gardner L. Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 2019;180:332–48.

    Article  Google Scholar 

  91. Wang L, Liu J. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen. Proc Royal Soc A: Mathematical, Phys Eng Sci 2014;470:20140609.

    Article  Google Scholar 

  92. Park YG, An HS, Kim JY, Park JU. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci Adv 2019;5:eaay2844.

    Article  Google Scholar 

  93. Zhang Q, Zheng Y, Liu J. Direct writing of electronics based on alloy and metal ink (DREAM Ink): a newly emerging area and its impact on energy, environment and health sciences. Front Energy 2012;6:311–40.

    Article  Google Scholar 

  94. Yu Y, Liu F, Liu J. Direct 3D printing of low melting point alloy via adhesion mechanism. Rapid Prototyp J 2017;23:642–50.

    Article  Google Scholar 

  95. Wang L, Liu J. Advances in the development of liquid metal-based printed electronic inks. Front Mater 2019;6:303.

    Article  Google Scholar 

  96. Zhuang Q, Ma Z, Gao Y, Zhang Y, Wang S, Lu X, et al. Liquid–metal-superlyophilic and conductivity–strain-enhancing scaffold for permeable superelastic conductors. Adv Funct Mater 2021;31:2105587.

    Article  CAS  Google Scholar 

  97. Ma Z, Huang Q, Xu Q, Zhuang Q, Zhao X, Yang Y, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater 2021;20:859–68.

    Article  CAS  Google Scholar 

  98. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, et al. Electrospinning for tissue engineering applications. Prog Mater Sci 2021;117:100721.

    Article  CAS  Google Scholar 

  99. Yu X, Fan W, Liu Y, Dong K, Wang S, Chen W, Zhang Y, Lu L, Liu H, Zhang Y. A one‐step fabricated sheath‐core stretchable fiber based on liquid metal with superior electric conductivity for wearable sensors and heaters. Adv Mater Technol. 2022, 2101618. https://doi.org/10.1002/admt.202101618.

  100. Zhang W, Wu B, Sun S, et al. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat Commun 2021;12:1–12.

    Google Scholar 

  101. Guo R, Yao S, Sun X, Liu J. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: a general method towards fast fabrication of flexible electronics. Sci China Mater 2019;62:982–94.

    Article  Google Scholar 

  102. Guo R, Wang H, Sun X, Yao S, Chang H, Wang H, et al. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces 2019;11:30019–27.

    Article  CAS  Google Scholar 

  103. Yuan B, Zhao C, Sun X, Liu J. Lightweight liquid metal entity. Adv Funct Mater 2020;30:1910709.

    Article  CAS  Google Scholar 

  104. Wang L, Fu J, Zhao F, Liu J. Pressure sensing of liquid metal-based fiber arrays. AIP Adv 2021;11:035322.

    Article  CAS  Google Scholar 

  105. Dong C, Leber A, Das Gupta T, Chandran R, Volpi M, Qu Y, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun 2020;11:1–9.

    Article  CAS  Google Scholar 

  106. Ghate S, Yu L, Du K, Lim CT, Yeo JC. Sensorized fabric glove as game controller for rehabilitation. IEEE SENSORS. 2020, 1–4. https://doi.org/10.1109/SENSORS47125.2020.9278938.

  107. Kim K, Choi J, Jeong Y, Cho I, Kim M, Kim S, et al. Highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: Integration of a 3D-printed microbump array with the microchannel. Adv Healthcare Mater 2019;8:1900978.

    Article  CAS  Google Scholar 

  108. Gao Q, Li H, Zhang J, **e Z, Zhang J, Wang L. Microchannel structural design for a room-temperature liquid metal based super-stretchable sensor. Sci Rep 2019;9:1–8.

    Google Scholar 

  109. Zadan M, Chiew C, Majidi C, Malakooti MH. Liquid metal architectures for soft and wearable energy harvesting devices. Multifunct Mater 2021;4:012001.

    Article  CAS  Google Scholar 

  110. Yang Y, Han J, Huang J, Sun J, Wang ZL, Seo S, et al. Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes. Adv Funct Mater 2020;30:1909652.

    Article  CAS  Google Scholar 

  111. Nan K, Babaee S, Chan W W, Kuosmanen J, Feig V, Jebran A, Traverso G et al. Low-cost gastrointestinal manometry via silicone–liquid-metal pressure transducers resembling a quipu. Nat Biomed Eng. 2022, 1–13. https://doi.org/10.1038/s41551-022-00859-5

  112. Liu H, **n Y, Bisoyi HK, Peng Y, Zhang J, Li Q. Stimuli-driven insulator–conductor transition in a flexible polymer composite enabled by biphasic liquid metal. Adv Mater 2021;33:2104634.

    Article  CAS  Google Scholar 

  113. Peng Y, Liu H, **n Y, Zhang J. Rheological conductor from liquid metal-polymer composites. Matter 2021;4:3001–14.

    Article  CAS  Google Scholar 

  114. Wang L, Yang Y, Chen Y, Majidi C, Iida F, Askounis E, et al. Controllable and reversible tuning of material rigidity for robot applications. Mater Today 2018;21:563–76.

    Article  CAS  Google Scholar 

  115. **n Y, Gao T, Xu J, Zhang J, Wu D. Transient electrically driven stiffness-changing materials from liquid metal polymer composites. ACS Appl Mater Interfaces 2021;13:50392–400.

    Article  CAS  Google Scholar 

  116. Deng YG, Liu J. Flexible mechanical joint as human exoskeleton using low-melting-point alloy. J Med Devices 2014;8:044506.

    Article  Google Scholar 

  117. Byun S-H, Sim JY, Zhou Z, Lee J, Qazi R, Walicki MC, et al. Mechanically transformative electronics, sensors, and implantable devices. Sci Adv 2019;5:eaay0418.

    Article  CAS  Google Scholar 

  118. Deng F, Nguyen Q-K, Zhang P. Multifunctional liquid metal lattice materials through hybrid design and manufacturing. Addit Manuf 2020;33:101117.

    Google Scholar 

  119. Wang H, Chen S, Li H, Chen X, Cheng J, Shao Y, et al. A liquid gripper based on phase transitional metallic ferrofluid. Adv Funct Mater 2021;31:2100274.

    Article  CAS  Google Scholar 

  120. Yu D, Liao Y, Song Y, Wang S, Wan H, Zeng Y, et al. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv Sci 2020;7:2000177.

    Article  CAS  Google Scholar 

  121. Zhang C, Li L, Yang X, Shi J, Gui L, Liu J. Study on the nucleating agents for gallium to reduce its supercooling. Int J Heat and Mass Transfer 2020;148:119055.

    Article  CAS  Google Scholar 

  122. Chen B, Cao Y, Li Q, Yan Z, Liu R, Zhao Y, Zhang X, Wu M, Qin Y, Sun C, et al. Liquid metal-tailored gluten network for protein-based e-skin. Nat Commun 2022;13:1–12.

    Google Scholar 

  123. Kwon KY, Cheeseman S, Frias-De-Diego A, Hong H, Yang J, Jung W, et al. A liquid metal mediated metallic coating for antimicrobial and antiviral fabrics. Adv Mater 2021;33:2104298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China under Key Project # 91748206, Shuimu Tsinghua Scholarship and China Postdoctoral Science Foundation: 2021M691707.

Funding

National Nature Science Foundation of China under Key Project, 51890893, **g Liu, Postdoctoral Research Foundation of China, 2021M691707, Hongzhang Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Liu.

Ethics declarations

Confict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, R., Cao, Y. et al. Liquid Metal Fibers. Adv. Fiber Mater. 4, 987–1004 (2022). https://doi.org/10.1007/s42765-022-00173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00173-4

Keywords

Navigation