Log in

Combined Effect of Thickness Stretching and Temperature-Dependent Material Properties on Dynamic Behavior of Imperfect FG Beams Using Three Variable Quasi-3D Model

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The multi-step sequential infiltration technique or sintering process usually produces porosities in functionally graded structures. It is confirmed that the porosity significantly influences the static responses of FGM beams, but its influence on their thermodynamic response is still worth studying.

Methods

To highlight this influence, the dynamic behavior of simply-supported porous FG beams with effective temperature-dependent material properties is examined by using a novel integral three variable quasi-3D high-order shear deformation theory for the first time. Notably, different thermal gradients varying along the thickness are considered. The governing differential equations of motion have been established based on Hamilton’s principle and solved by employing the Navier-type closedform solution.

Results

The present theoretical results are validated with the existing literature, and excellent agreement is identified between the results. Besides, material temperature dependence, power-law index, porosity parameter, temperature rising, and slenderness ratio effects are discussed. Results show that dynamic behavior using temperature-dependent and independent material properties would produce different natural frequencies. With the rise of porosity, the natural frequency decreases significantly at high temperatures.

Conclusions

The beam with a higher slenderness ratio is more sensitive to the stretching effect. Finally, to improve the thermodynamic behavior of such structures, ceramic constituents with a lower thermal expansion coefficient would be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Thai H-T, Kim S-E (2015) A review of theories for the modeling and analysis of functionally graded plates and shells. Compos Struct 128:70–86. https://doi.org/10.1016/j.compstruct.2015.03.010

    Article  Google Scholar 

  2. Liu Y, Su S, Huang H, Liang Y (2019) Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Compos B. https://doi.org/10.1016/j.compositesb.2018.12.063

    Article  Google Scholar 

  3. Fallah F, Nosier A, Sharifi M, Ghezelbash F (2015) On perturbation method in mechanical, thermal and thermo-mechanical loadings of plates: cylindrical bending of FG plates. ZAMM J Appl Math Mech. https://doi.org/10.1002/zamm.201400136

    Article  Google Scholar 

  4. Khosravi S, Arvin Y, Kiani H (2019) Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams. Compos B. https://doi.org/10.1016/j.compositesb.2019.107178

    Article  Google Scholar 

  5. Rachedi MA, Benyoucef S, Bouhadra A, Bachir Bouiadjra R, Sekkal M, Benachour A (2020) Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation. Geomech Eng 22(1):65–80. https://doi.org/10.12989/gae.2020.22.1.065

    Article  Google Scholar 

  6. Merzoug M, Bourada M, Sekkal M, Ali Chaibdra A, Belmokhtar C, Benyoucef S, Benachour A (2020) 2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: effect of the micromechanical models. Geomech Eng 22(4):361–374. https://doi.org/10.12989/gae.2020.22.4.361

    Article  Google Scholar 

  7. Nikrad SF, Kanellopoulos A, Bodaghi M, Chen ZT, Pourasghar A (2021) Large deformation behavior of functionally graded porous curved beams in thermal environment. Arch Appl Mech 91:2255–2278. https://doi.org/10.1007/s00419-021-01882-9

    Article  Google Scholar 

  8. **ang HJ, Yang J (2008) Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos B Eng 39(2):292–303. https://doi.org/10.1016/j.compositesb.2007.01.005

    Article  Google Scholar 

  9. Li SR, Su HD, Cheng CJ (2009) Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Appl Math Mech 30(8):969–982. https://doi.org/10.1007/s10483-009-0803-7

    Article  MATH  Google Scholar 

  10. Malekzadeh P, Golbahar Haghighi MR, Atashi MM (2010) Out-of-plane free vibration of functionally graded circular curved beams in thermal environment. Int J Appl Mech 2(3):635–652. https://doi.org/10.1142/S175882511000069X

    Article  Google Scholar 

  11. Fallah A, Aghdam MM (2012) Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Compos B Eng 43(3):1523–1530. https://doi.org/10.1016/j.compositesb.2011.08.041

    Article  Google Scholar 

  12. Zhang DG (2014) Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica 49(2):283–293. https://doi.org/10.1007/s11012-013-9793-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Akbas SD (2015) Wave propagation of a functionally graded beam in thermal environments. Steel Composite Struct 19(6):1421–1447. https://doi.org/10.12989/SCS.2015.19.6.1421

    Article  Google Scholar 

  14. Zahedinejad P (2015) Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment. Int J Struct Stab Dyn 16:1550029. https://doi.org/10.1142/S0219455415500297

    Article  MathSciNet  MATH  Google Scholar 

  15. Paul A, Das A (2019) Free vibration behavior of tapered functionally graded material beam in thermal environment considering geometric non-linearity, shear deformability and temperature-dependent thermal conductivity. J Mater Design Appl 233(7):1429–1448. https://doi.org/10.1177/1464420718759376

    Article  Google Scholar 

  16. Zhu J, Lai Z, Yin Z, Jeon J, Lee S (2001) Fabrication of ZrO2-Nicr functionally graded material by powder metallurgy. Mater Chem Phys 68(1–3):130–135. https://doi.org/10.1016/S0254-0584(00)00355-2

    Article  Google Scholar 

  17. Wattanasakulpong N, Prusty BG, Kelly DW, Hoffman M (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des 36:182–190. https://doi.org/10.1016/j.matdes.2011.10.049

    Article  Google Scholar 

  18. Chen D, Yang J, Kitipornchai S (2015) Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct 133:54–61. https://doi.org/10.1016/j.compstruct.2015.07.052

    Article  Google Scholar 

  19. Mojahedin A, Jabbari M, Rabczuk T (2018) Thermoelastic analysis of functionally graded porous beam. J Thermal Stresses 41(8):937–950. https://doi.org/10.1080/01495739.2018.1446374

    Article  Google Scholar 

  20. Avcar M (2019) Free vibration of imperfect sigmoid and power law functionally graded beams. Steel Composite Struct 30(6):603–615. https://doi.org/10.12989/SCS.2019.30.6.603

    Article  Google Scholar 

  21. Ahmed RA, Fenjan RM, Faleh NM (2019) Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections. Geomech Eng 17(2):175–180. https://doi.org/10.12989/gae.2019.17.2.175

    Article  Google Scholar 

  22. Babaei H, Eslami MR, Khorshidvand AR (2019) Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane. J Therm Stresses. https://doi.org/10.1080/01495739.2019.1660600

    Article  Google Scholar 

  23. Hamed MA, Abo-bakr RM, Mohamed SA, Eltaher MA (2020) Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Eng Comput 36:1929–1946. https://doi.org/10.1007/s00366-020-01023-w

    Article  Google Scholar 

  24. Hadji L (2020) Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model. Smart Struct Syst 26(2):253–262. https://doi.org/10.12989/sss.2020.26.2.253

    Article  Google Scholar 

  25. Gafour Y, Hamidi A, Benahmed A, Zidour M, Bensattalah T (2020) Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle. Adv Nano Res 8(1):37–47. https://doi.org/10.12989/anr.2020.8.1.037

    Article  Google Scholar 

  26. Bouhadra A, Menasria A, Rachedi MA (2021) Boundary conditions effect for buckling analysis of porous functionally graded nanobeam. Adv Nano Res 10(4):313–325. https://doi.org/10.12989/ANR.2021.10.4.313

    Article  Google Scholar 

  27. Wattanasakulpong N, Ungbhakorn V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol 32(1):111–120. https://doi.org/10.1016/j.ast.2013.12.002

    Article  Google Scholar 

  28. Wattanasakulpong N, Chaikittiratana A (2015) Flexural vibration of imperfect functionally graded beams based on timoshenko beam theory. Chebyshev Collocation Method Meccanica 50(5):1331–1342. https://doi.org/10.1007/s11012-014-0094-8

    Article  MATH  Google Scholar 

  29. Ebrahimi F, Ghasemi F, Salari E (2016) Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51:223–249. https://doi.org/10.1007/s11012-015-0208-y

    Article  MathSciNet  MATH  Google Scholar 

  30. Ebrahimi F, Jafari A (2016) A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. J Eng. https://doi.org/10.1155/2016/9561504

    Article  Google Scholar 

  31. Al Rjoub YS, Hamad AG (2017) Free vibration of functionally Euler–Bernoulli and Timoshenko graded porous beams using the transfer matrix method. KSCE J Civ Eng 21:792–806. https://doi.org/10.1007/s12205-016-0149-6

    Article  Google Scholar 

  32. Daouadji TH, Hadji L (2015) Analytical solution of nonlinear cylindrical bending for functionally graded plates. Geomech Eng 9(5):631–644. https://doi.org/10.12989/GAE.2015.9.5.631

    Article  Google Scholar 

  33. Touloukian YS (1966) Thermophysical properties of high-temperature solid materials. Oxides and their solutions and mixtures, vol 4. In: Part I. Simple oxygen compounds and their mixtures. DTIC Document, Defense Technical Information Center

  34. Reddy JN, Chin CD (1998) Thermo-mechanical analysis of functionally graded cylinders and plates. J Therm Stress 21:593–626. https://doi.org/10.1080/01495739808956165

    Article  Google Scholar 

  35. Trinh LC, Vo TP, Thai HT, Nguyen TK (2016) An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Compos B 100:152–163. https://doi.org/10.1016/j.compositesb.2016.06.067

    Article  Google Scholar 

  36. Panda SK, Singh BN (2013) Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre. Aerosp Sci Technol 29(1):47–57. https://doi.org/10.1016/j.ast.2013.01.007

    Article  Google Scholar 

  37. Singh VK, Panda SK (2014) Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct 85:341–349. https://doi.org/10.1016/j.tws.2014.09.003

    Article  Google Scholar 

  38. Selmi A (2020) Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam. Smart Struct Syst 26(3):361–371. https://doi.org/10.12989/SSS.2020.26.3.361

    Article  Google Scholar 

  39. Vinyas M (2020) On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos Struct 240:112044. https://doi.org/10.1016/j.compstruct.2020.112044

    Article  Google Scholar 

  40. Attia MA (2017) On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int J Eng Sci 115:73–101. https://doi.org/10.1016/j.ijengsci.2017.03.011

    Article  MathSciNet  MATH  Google Scholar 

  41. Yahea HT, Majeed WI (2021) Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory. Compos Mater Eng 3(3):179–199. https://doi.org/10.12989/cme.2021.3.3.179

    Article  Google Scholar 

  42. Kiani Y, Eslami MR (2013) An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos Part B Eng 45(1):101–110

    Article  Google Scholar 

  43. Şimşek M (2010) Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl Eng Des 240(4):697–705. https://doi.org/10.1016/j.nucengdes.2009.12.013

    Article  Google Scholar 

  44. Hadji L, Khelifa Z, Daouadji TH, Bedia EA (2015) Static bending and free vibration of FGM beam using an exponential shear deformation theory. Coupled Syst Mech 4:99–114. https://doi.org/10.12989/csm.2015.4.1.099

    Article  Google Scholar 

  45. Zaoui FZ, Hanifi L, Younsi A, Meradjah M, Tounsi A, Ouinas D (2017) Free vibration analysis of functionally graded beams using a higher-order shear deformation theory. Math Model Eng Prob 4:7–12. https://doi.org/10.18280/mmep.040102

    Article  Google Scholar 

  46. Akbas SD (2018) Geometrically nonlinear analysis of a laminated composite beam. Struct Eng Mech 66(1):27–36. https://doi.org/10.12989/sem.2018.66.1.027

    Article  MathSciNet  Google Scholar 

  47. Akbas SD (2018) Thermal post-buckling analysis of a laminated composite beam. Struct Eng Mech 67(4):337–346. https://doi.org/10.12989/sem.2018.67.4.337

    Article  Google Scholar 

  48. Mehar K, Panda SK, Yuvarajan D, Gautam C (2019) Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.03.002

    Article  Google Scholar 

  49. Kiani Y (2019) NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. J Therm Stresses. https://doi.org/10.1080/01495739.2019.1673687

    Article  Google Scholar 

  50. Shahsavari D, Karami B, Janghorban M (2019) Size-dependent vibration analysis of laminated composite plates. Adv Nano Res 7(5):337–349. https://doi.org/10.12989/ANR.2019.7.5.337

    Article  MATH  Google Scholar 

  51. Mehar K, Panda SK (2019) Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure. Adv Nano Res 7(3):181–190

    Google Scholar 

  52. Timesli A (2020) Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation. Comput Concr 26(1):53–62. https://doi.org/10.12989/CAC.2020.26.1.053

    Article  Google Scholar 

  53. Sahu P, Sharma N, Panda SK (2020) Numerical prediction and experimental validation of free vibration responses of hybrid composite (glass/carbon/kevlar) curved panel structure. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112073

    Article  Google Scholar 

  54. Madenci E, Özütok A (2020) Variational approximate for high order bending analysis of laminated composite plates. Struct Eng Mech 73(1):97–108. https://doi.org/10.12989/sem.2020.73.1.097

    Article  Google Scholar 

  55. Abed ZAK, Majeed WI (2020) Effect of boundary conditions on harmonic response of laminated plates. Compos Mater Eng 2(2):125–140. https://doi.org/10.12989/cme.2020.2.2.125

    Article  Google Scholar 

  56. Bharath HS, Waddar S, Bekinal SI, Jeyaraj P, Doddamani M (2020) Effect of axial compression on dynamic response of concurrently printed sandwich. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113223

    Article  Google Scholar 

  57. Yaylaci M, Avcar M (2020) Finite element modeling of contact between an elastic layer and two elastic quarter planes. Comput Concr 26(2):107–114. https://doi.org/10.12989/CAC.2020.26.2.107

    Article  Google Scholar 

  58. Al-Basyouni KS, Ghandourah E, Mostafa HM, Algarni A (2020) Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body. Geomech Eng 21(1):1–9. https://doi.org/10.12989/GAE.2020.21.1.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Bourada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamen, B., Bouhadra, A., Bourada, F. et al. Combined Effect of Thickness Stretching and Temperature-Dependent Material Properties on Dynamic Behavior of Imperfect FG Beams Using Three Variable Quasi-3D Model. J. Vib. Eng. Technol. 11, 2309–2331 (2023). https://doi.org/10.1007/s42417-022-00704-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00704-8

Keywords

Navigation