Log in

Structured Magnetic Core/Silica Internal Shell Layer and Protein Out Layer Shell (BSA@SiO2@SME): Preparation and Characterization

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Purpose

Magnetic nanoparticles are an interesting approach in the biomedical and biotechnological field. They can be used as a drug delivery system or in magnetic resonance imaging. However, these particles have the disadvantage of being colloidally instable, easily oxidized, and suffer from partial toxicity. To overcome these problems, magnetic nanoparticles were coated by different types of coats such as silica, polymer, etc. the purpose of this study is to develop a coated iron oxide nanoparticle system.

Methods

Seed magnetic emulsion particles (SME) were first prepared and characterized before inducing silica layer using sol–gel process. The obtained SiO2@SME particles are then encapsulated using bovine serum albumin (BSA) layer. This proteins layer was performed via nanoprecipitation of BSA molecules on the SME. Particles were characterized by electron microscopy, FTIR, TGA, and zeta potential measurement.

Results

Characterization studies confirm the successful coating of BSA on the surface of amino-functionalized silica shell and magnetic core.

Conclusion

The used process leads to the preparation of highly magnetic particles encapsulated with silica layer ad then coated with proteins shell. The presence of silica shell will enhance the chemical stability of the magnetic core, whereas, the presence of proteins shell will improve low cytotoxicity and good biocompatibility in the contact with biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cicha I, Lyer S, Janko C, Friedrich RP, Pöttler M, Alexiou C (2017) Magnetic nanoparticles for medical applications. Nanomedicine 12:825–829

    Article  CAS  Google Scholar 

  2. Rahman MM, Bahadar S, Jamal A, Faisal M, Aisiri M (2011) Iron oxide nanoparticles. In: Rahman M (ed) Nanomaterials. Rijeka, InTech, pp 135–152

    Chapter  Google Scholar 

  3. Bruschi ML, de Toledo LdAS (2019) Pharmaceutical applications of iron-oxide magnetic nanoparticles. Magnetochemistry 5:50

    Article  Google Scholar 

  4. Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9

    Article  CAS  Google Scholar 

  5. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  6. Park J, Koo B, Hwang Y, Bae C, An K, Park J-G, Park HM, Hyeon T (2004) Novel synthesis of magnetic Fe2P nanorods from thermal decomposition of continuously delivered precursors using a syringe pump. Angew Chem Int Ed 43:2282–2285

    Article  CAS  Google Scholar 

  7. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785

    Article  CAS  Google Scholar 

  8. Wang S, Zhang B, Su L, Nie W, Han D, Han G, Zhang H, Chong C, Tan J (2019) Subcellular distributions of iron oxide nanoparticles in rat brains affected by different surface modifications. J Biomed Mater Res Part A 107:1988–1998

    Article  CAS  Google Scholar 

  9. Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:1–43

    Article  Google Scholar 

  10. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  11. Martínez-Banderas AI, Aires A, Teran FJ, Perez JE, Cadenas JF, Alsharif N, Ravasi T, Cortajarena AL, Kosel J (2016) Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. Sci Rep 6:1–11

    Article  Google Scholar 

  12. Tarhini M, Greige-Gerges H, Elaissari A (2017) Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm 522:172–197

    Article  CAS  Google Scholar 

  13. Li Z, Qiang L, Zhong S, Wang H, Cui X (2013) Synthesis and characterization of monodisperse magnetic Fe3O4 at BSA core–shell nanoparticles. Colloids Surf A Physicochem Eng Aspects 436:1145–1151

    Article  CAS  Google Scholar 

  14. Gonzalez-Moragas L, Yu S-M, Carenza E, Laromaine A, Roig A (2015) Protective effects of bovine serum albumin on superparamagnetic iron oxide nanoparticles evaluated in the nematode Caenorhabditis elegans. ACS Biomater Sci Eng 1:1129–1138

    Article  CAS  Google Scholar 

  15. Aires A, Ocampo SM, Cabrera D, de la Cueva L, Salas G, Teran FJ, Cortajarena AL (2015) BSA-coated magnetic nanoparticles for improved therapeutic properties. J Mater Chem B 3:6239–6247

    Article  CAS  Google Scholar 

  16. Nosrati H, Sefidi N, Sharafi A, Danafar H, Kheiri Manjili H (2018) Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg Chem 76:501–509

    Article  CAS  Google Scholar 

  17. Montagne F, Mondain-Monval O, Pichot C, Mozzanega H, Elaı̈ssari A (2002) Preparation and characterization of narrow sized (o/w) magnetic emulsion. J Magn Magn Mater 250:302–312

    Article  CAS  Google Scholar 

  18. Bitar A, Vega-Chacón J, Lgourna Z, Fessi H, Jafelicci M, Elaissari A (2018) Submicron silica shell–magnetic core preparation and characterization. Colloids Surf A Physicochem Eng Aspects 537:318–324

    Article  CAS  Google Scholar 

  19. Tarhini M, Benlyamani I, Hamdani S, Agusti G, Fessi H, Greige-Gerges H, Bentaher A, Elaissari A (2018) Protein-based nanoparticle preparation via nanoprecipitation method. Materials 11:394–412

    Article  Google Scholar 

  20. Barth A, Zscherp C (2002) What vibrations tell about proteins. Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  21. Qasim M, Asghar K, Dharmapuri G, Das D (2017) Investigation of novel superparamagnetic Ni 0.5 Zn 0.5 Fe2O4 @albumen nanoparticles for controlled delivery of anticancer drug. Nanotechnology 28:365101

    Article  Google Scholar 

  22. Li D, Hua M, Fang K, Liang R (2017) BSA directed-synthesis of biocompatible Fe 3 O 4 nanoparticles for dual-modal T 1 and T 2 MR imaging in vivo. Anal Methods 9:3099–3104

    Article  CAS  Google Scholar 

  23. Katumba G, Mwakikunga BW, Mothibinyane TR (2008) FTIR and Raman spectroscopy of carbon nanoparticles in SiO2, ZnO and NiO matrices. Nanoscale Res Lett 3:421–426

    Article  CAS  Google Scholar 

  24. Wu Z, **ang H, Kim T, Chun M-S, Lee K (2006) Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. J Colloid Interface Sci 304:119–124

    Article  CAS  Google Scholar 

  25. Čampelj S, Makovec D, Drofenik M (2009) Functionalization of magnetic nanoparticles with 3-aminopropyl silane. J Magn Magn Mater 321:1346–1350

    Article  Google Scholar 

  26. Mikhaylova M, Kim DK, Berry CC, Zagorodni A, Toprak M, Curtis ASG, Muhammed M (2004) BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater 16:2344–2354

    Article  CAS  Google Scholar 

  27. Jiang P, Zhang Y, Zhu C, Zhang W, Mao Z, Gao C (2016) Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field. Acta Biomater 46:141–150

    Article  CAS  Google Scholar 

  28. Can K, Ozmen M, Ersoz M (2009) Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids Surf B Biointerfaces 71:154–159

    Article  CAS  Google Scholar 

  29. Nosrati H, Salehiabar M, Manjili HK, Danafar H, Davaran S (2018) Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int J Biol Macromol 108:909–915

    Article  CAS  Google Scholar 

  30. Souza DM, Andrade AL, Fabris JD, Valério P, Góes AM, Leite MF, Domingues RZ (2008) Synthesis and in vitro evaluation of toxicity of silica-coated magnetite nanoparticles. J Non Cryst Solids 354:4894–4897

    Article  CAS  Google Scholar 

  31. Bini RA, Marques RFC, Santos FJ, Chaker JA, Jafelicci M (2012) Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. J Magn Magn Mater 324:534–539

    Article  CAS  Google Scholar 

  32. Zhu L, Wang D, Wei X, Zhu X, Li J, Tu C, Su Y, Wu J, Zhu B, Yan D (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169:228–238

    Article  CAS  Google Scholar 

  33. Lu HM, Zheng WT, Jiang Q (2007) Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. J Phys D Appl Phys 40:320–325

    Article  CAS  Google Scholar 

  34. Yu S, Wu G, Gu X, Wang J, Wang Y, Gao H, Ma J (2013) Magnetic and pH-sensitive nanoparticles for antitumor drug delivery. Colloids Surf B Biointerfaces 103:15–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jaime Vega-Chacón would like to thank Coordenação de aperfeiçoamento de pessoal de nivel superior (CAPES) for the Grant funded Bolsista capes/Programa Doutorado Sanduíche no Exterior/Processo n° {88881.132878/2016-01}. Funding was provided by Campus France (Grant No. PHC PROCOPE 40544QH), Horizon 2020  research and innovation programme entitled (An integrated POC solution for non-invasive diagnosis and therapy monitoring of Heart Failure patients, KardiaTool) under grant agreement No 768686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Elaissari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarhini, M., Vega-Chacón, J., Jafelicci, M. et al. Structured Magnetic Core/Silica Internal Shell Layer and Protein Out Layer Shell (BSA@SiO2@SME): Preparation and Characterization. Chemistry Africa 3, 127–134 (2020). https://doi.org/10.1007/s42250-019-00097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00097-4

Keywords

Navigation