Log in

Biomaterial approaches for cardiovascular tissue engineering

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the leading global cause of death. As a possible remedy, the field of cardiac tissue engineering has emerged as a regenerative medicine approach to develop bioartificial tissue constructs that can be implanted in order to provide support to the damaged heart tissue and restore function. Currently, there is a dire clinical need for suitable biomaterials that allow for cardiac graft integration, remodeling, and endogenous tissue regeneration. A range of biomaterial strategies can be used to address this need, by incorporating natural or synthetic materials to create tissue mimics such as vascular grafts, heart valves, and cardiac patches. Cardiovascular tissue engineering mainly relies on develo** biodegradable polymeric scaffolds, often supplemented with biomolecules or natural proteins, to imitate the extracellular matrix architecture and biochemical composition of native tissues, while promoting tissue integration and regeneration. Considering the highly complex architecture of targeted cardiovascular tissues, there is a need for high-precision manufacturing techniques to generate cardiac grafts in a reproducible fashion. While methods such as 3D casting, electrospinning, and self-assembly have been traditionally used in the field, several new entrants, such as additive manufacturing (3D bioprinting) techniques, have shown great promise. This review is aimed at assessing the current state of the art of biomaterials and manufacturing techniques used in cardiovascular tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.J. Benjamin, M.J. Blaha, S.E. Chiuve, Circulation 135, e146 (2017)

    Google Scholar 

  2. J.G. Trogdon, E.A. Finkelstein, I.A. Nwaise, The economic burden of chronic cardiovascular disease for major insurers. Health Promot. Pract. 8, 234–242 (2007)

    Google Scholar 

  3. Q.Z. Chen, S.E. Harding, N.N. Ali, Biomaterials in cardiac tissue engineering: ten years of research survey. Mat. Sci. Eng. R. 59, 1–37 (2008)

  4. L.A. Reis, L.L. Chiu, N. Feric, Biomaterials in myocardial tissue engineering. J. Tissue Eng. Regen. Med. 10, 11–28 (2016)

    Google Scholar 

  5. K.Y. Lee, D.J. Mooney, Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012)

  6. M. Shachar, O. Tsur-Gang, T. Dvir, The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater. 7, 152–162 (2011)

    Google Scholar 

  7. Y. Sapir, O. Kryukov, S. Cohen, Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32, 1838–1847 (2011)

    Google Scholar 

  8. A. Dar, M. Shachar, J. Leor, Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol. Bioeng. 80, 305–312 (2002)

    Google Scholar 

  9. E. Rosellini, C. Cristallini, N. Barbani, J. Biomed. Mater. Res. A 91, 447 (2009)

    Google Scholar 

  10. L. Zhang, Q. Ao, A. Wang, A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J. Biomed. Mater. Res. A 77A, 277–284 (2006)

    Google Scholar 

  11. A.M. Martins, G. Eng, S.G. Caridade, Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15, 635–643 (2014)

    Google Scholar 

  12. A. Hussain, G. Collins, D. Yip, Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnol. Bioeng. 110, 637–647 (2013)

    Google Scholar 

  13. Y. Liu, S. Wang, R. Zhang, Composite poly(lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. Int. J. Biol. Macromol. 103, 1130–1137 (2017)

    Google Scholar 

  14. S. Pok, J.D. Myers, S.V. Madihally, A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater. 9, 5630–5642 (2013)

    Google Scholar 

  15. S. Islam, M.A.R. Bhuiyan, M.N. Islam, Chitin and chitosan: structure, properties and applications in biomedical engineering. J. Polym. Environ. 25, 854–866 (2017)

    Google Scholar 

  16. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29, 4532–4539 (2008)

    Google Scholar 

  17. M. Kharaziha, M. Nikkhah, S.R. Shin, PGS: gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34, 6355–6366 (2013)

    Google Scholar 

  18. P. Koti, N. Muselimyan, E. Mirdamadi, J. 3D Print. Med. 3, 11 (2019)

    Google Scholar 

  19. J.L. Vanderhooft, M. Alcoutlabi, J.J. Magda, Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol. Biosci. 9, 20–28 (2009)

    Google Scholar 

  20. V. Serpooshan, M. Mahmoudi, D.A. Hu, J. 3D Print. Med. 1, 123 (2017)

    Google Scholar 

  21. K.S. Rho, L. Jeong, G. Lee, Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27, 1452–1461 (2006)

    Google Scholar 

  22. C. Weinberg, E. Bell, A blood vessel model constructed from collagen and cultured vascular cells. Science 231, 397–400 (1986)

    Google Scholar 

  23. R.P. Lanza, R.S. Langer, J. Vacanti, Principles of Tissue Engineering, 4th edn. (Academic Press, 2000), pp. 995–9

  24. E.D. Grassl, T.R. Oegema, R.T. Tranquillo, A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. 66A, 550–561 (2003)

    Google Scholar 

  25. L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)

    Google Scholar 

  26. M.C. McManus, E.D. Boland, H.P. Koo, Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2, 19–28 (2006)

    Google Scholar 

  27. Y. Matsuzaki, K. John, T. Shoji, The evolution of tissue engineered vascular graft technologies: from preclinical trials to advancing patient care. Appl. Sci. 9, 1274 (2019)

    Google Scholar 

  28. S.K. Jaganathan, E. Supriyanto, S. Murugesan, A. Balaji, M.K. Asokan, Biomaterials in cardiovascular research: Applications and clinical implications. BioMed. Res. Int. 2014, 1–11 (2014)

  29. R.A. McCready, H. Siderys, J.N. Pittman, Delayed postoperative bleeding from polytetrafluoroethylene carotid artery patches. J. Vasc. Surg. 15, 661–663 (1992)

    Google Scholar 

  30. K.S. Tweden, H. Harasaki, M. Jones, J. Heart Valve Dis. 4 Suppl 1, S90 (1995)

    Google Scholar 

  31. W. Hadasha, D. Bezuidenhout, in Industrial Applications of Poly(lactic acid), ed. By M.L. Di Lorenzo, R. Androsch (Springer, Cham, 2018), p. 51.

  32. L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, Biodegradable polymer scaffolds for tissue engineering. Nat. Biotechnol. 12, 689–693 (1994)

    Google Scholar 

  33. A. H. Huang, L. E. Niklason, Cellular and Molecular Life Sciences : CMLS 71, 2103 (2014)

    Google Scholar 

  34. J. Gao, L. Niklason, R. Langer, J. Biomed. Mater. Res. 42, 417 (1998)

    Google Scholar 

  35. E.J. Frazza, E.E. Schmitt, A new absorbable suture. J. Biomed. Mater. Res. 5, 43–58 (1971)

    Google Scholar 

  36. L. Bruder, H. Spriestersbach, K. Brakmann, Transcatheter decellularized tissue-engineered heart valve (dTEHV) grown on polyglycolic acid (PGA) scaffold coated with P4HB shows improved functionality over 52 weeks due to polyether-ether-ketone (PEEK) insert. Journal of Functional Biomaterials 9, 64 (2018)

    Google Scholar 

  37. U.A. Stock, J.E. Mayer, J. Long-Term Eff. Med. Implants 11, 249 (2001)

    Google Scholar 

  38. H.R. Pant, M.P. Neupane, B. Pant, Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf. B: Biointerfaces 88, 587–592 (2011)

    Google Scholar 

  39. T. Fukunishi, C.A. Best, T. Sugiura, Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS One 11, e0158555 (2016)

    Google Scholar 

  40. S.J. Lee, M.E. Kim, H. Nah, Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: in vitro and in vivo evaluations. J. Colloid Interface Sci. 537, 333–344 (2019)

    Google Scholar 

  41. E. Pektok, B. Nottelet, J.-C. Tille, Degradation and healing characteristics of small-diameter poly(ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118, 2563–2570 (2008)

    Google Scholar 

  42. R. Rai, M. Tallawi, N. Barbani, Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater. Sci. Eng. C 33, 3677–3687 (2013)

    Google Scholar 

  43. Y. Wang, G.A. Ameer, B.J. Sheppard, A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002)

    Google Scholar 

  44. R. Rai, M. Tallawi, A. Grigore, Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog. Polym. Sci. 37, 1051–1078 (2012)

    Google Scholar 

  45. C. Ceccaldi, R. Bushkalova, C. Alfarano, Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomater. 10, 901–911 (2014)

    Google Scholar 

  46. Y. Sun, X. Han, X. Wang, Sustained release of IGF-1 by 3D mesoporous scaffolds promoting cardiac stem cell migration and proliferation. Cell. Physiol. Biochem. 49, 2358–2370 (2018)

    Google Scholar 

  47. J. Leor, Y. Amsalem, S. Cohen, Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther. 105, 151–163 (2005)

  48. L.D. Huyer, M. Montgomery, Y. Zhao, Y. **ao, G. Conant, A. Korolj, M. Radisic, Biomaterial based cardiac tissue engineering and its applications. Biomed. Mater. 10, 034004–034004 (2015)

  49. T.J. Keane, S.F. Badylak, Biomaterials for tissue engineering applications. Semin. Pediatr. Surg. 23, 112–118 (2014)

    Google Scholar 

  50. V. Di Felice, C. Serradifalco, L. Rizzuto, Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells. J. Tissue Eng. Regen. Med. 9, E51–E64 (2015)

    Google Scholar 

  51. M. Izadifar, D. Chapman, P. Babyn, UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng. Part C Methods 24, 74–88 (2018)

    Google Scholar 

  52. R. Stoica, R. Somoghi, S. Doncea, Optoelectron. Adv. Mater. Rapid Commun. 11, 113 (2017)

    Google Scholar 

  53. J.B. Hu, D.A. Hu, J.W. Buikema, Tissue Eng. A 23, S158 (2017)

    Google Scholar 

  54. K. Wei, V. Serpooshan, C. Hurtado, Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015)

    Google Scholar 

  55. V. Serpooshan, P. Ruiz-Lozano, Ultra-rapid manufacturing of engineered epicardial substitute to regenerate cardiac tissue following acute ischemic injury. Methods Mol. Biol. 1210, 239 (2014)

    Google Scholar 

  56. V. Serpooshan, M. Zhao, S.A. Metzler, Use of bio-mimetic three-dimensional technology in therapeutics for heart disease. Bioengineered 5, 193–197 (2014)

    Google Scholar 

  57. S. Lee, V. Serpooshan, X. Tong, Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials 131, 111–120 (2017)

    Google Scholar 

  58. V. Serpooshan, P. Chen, H. Wu, Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials 131, 47–57 (2017)

    Google Scholar 

  59. V. Serpooshan, M. Zhao, S.A. Metzler, The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 34, 9048–9055 (2013)

    Google Scholar 

  60. W.H. Zimmermann, I. Melnychenko, G. Wasmeier, Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12, 452–458 (2006)

    Google Scholar 

  61. J.S. Wendel, L. Ye, R. Tao, Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model. Stem Cells Transl. Med. 4, 1324–1332 (2015)

    Google Scholar 

  62. S. Jockenhoevel, G. Zund, S.P. Hoerstrup, Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 19, 424–430 (2001)

    Google Scholar 

  63. Y. Li, H. Meng, Y. Liu, B.P. Lee, Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci. World J. 2015, 10–20 (2015)

  64. K. Yuan Ye, K.E. Sullivan, L.D. Black, Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering, J. Vis. Exp. 55, 3251–9 (2011)

  65. K.S. Thomson, F.S. Korte, C.M. Giachelli, Prevascularized microtemplated fibrin scaffolds for cardiac tissue engineering applications. Tissue Eng Part A 19, 967–977 (2013)

    Google Scholar 

  66. T. Hoshiba, H. Lu, N. Kawazoe, Decellularized matrices for tissue engineering. Expert. Opin. Biol. Ther. 10, 1717–1728 (2010)

    Google Scholar 

  67. D.A. Taylor, L.C. Sampaio, Z. Ferdous, Decellularized matrices in regenerative medicine. Acta Biomater. 74, 74–89 (2018)

    Google Scholar 

  68. M. Parmaksiz, A. Dogan, S. Odabas, Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed. Mater. 11, 022003 (2016)

    Google Scholar 

  69. T.W. Gilbert, Strategies for tissue and organ decellularization. J. Cell. Biochem. 113, 2217–2222 (2012)

    Google Scholar 

  70. H.C. Ott, T.S. Matthiesen, S.K. Goh, Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008)

    Google Scholar 

  71. L.F. Tapias, H.C. Ott, Decellularized scaffolds as a platform for bioengineered organs. Curr. Opin. Organ Transplant. 19, 145–152 (2014)

  72. J.P. Guyette, S.E. Gilpin, J.M. Charest, Perfusion decellularization of whole organs. Nat. Protoc. 9, 1451–1468 (2014)

    Google Scholar 

  73. S.L.J. Ng, K. Narayanan, S. Gao, Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials 32, 7571–7580 (2011)

    Google Scholar 

  74. S.M.S. Gruber, P. Ghosh, K.W. Mueller, P.W. Whitlock, C.Y. Lin, Novel process for 3D printing decellularized matrices, J. Vis. Exp. 143, (2019)

  75. F. Pati, D.W. Cho, Bioprinting of 3D tissue models using decellularized extracellular matrix bioink. Methods Mol. Biol. 1612, 381–90 (2017)

  76. E.J. Lee, F.K. Kasper, A.G. Mikos, Biomaterials for tissue engineering. Ann. Biomed. Eng. 42, 323–337 (2014)

    Google Scholar 

  77. Z.G. Ge, F. Yang, J.C.H. Goh, S. Ramakrishna, E.H. Lee, Biomaterials and scaffolds for ligament tissue engineering. J. Biomed. Mater. Res. A. 77, 639–652 (2006)

  78. D.P. Bhattarai, L.E. Aguilar, C.H. Park, C.S. Kim, A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membrane. 8, E62 (2018)

  79. S. Ji, M. Guvendiren, Recent advances in bioink design for 3D bioprinting of tissues and organs. Front. Bioeng. Biotechnol. 5, 23 (2017)

  80. M.R. Hoenig, G.R. Campbell, B.E. Rolfe, J.H. Campbell, Tissue-engineered blood vessels: alternative to autologous grafts? Arter. Thromb. Vasc. Biol. 25, 1128–34 (2005)

  81. E. Fallahiarezoudar, M. Ahmadipourroudposht, A. Idris, N. Mohd Yusof, A review of: Application of synthetic scaffold in tissue engineering heart valves. Mater. Sci. Eng. C. Mater. Biol. Appl. 48, 556–565 (2015)

  82. C. Del Gaudio, M. Grigioni, A. Bianco, Electrospun bioresorbable heart valve scaffold for tissue engineering. Int. J. Artif. Organs 31, 68–75 (2008)

    Google Scholar 

  83. N. Masoumi, A. Jean, J.T. Zugates, Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering. J. Biomed. Mater. Res. A 101A, 104–114 (2013)

    Google Scholar 

  84. Y. Wang, Y.M. Kim, R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. 66A, 192–197 (2003)

    Google Scholar 

  85. C. Fidkowski, M.R. Kaazempur-Mofrad, J. Borenstein, Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 11, 302–309 (2005)

    Google Scholar 

  86. L. Xue, H.P. Greisler, Biomaterials in the development and future of vascular grafts. J. Vasc. Surg. 37, 472–480 (2003)

    Google Scholar 

  87. A. Shapira, R. Feiner, T. Dvir, Composite biomaterial scaffolds for cardiac tissue engineering. Int. Mater. Rev. 61, 1–19 (2016)

    Google Scholar 

  88. A. Nandakumar, A. Barradas, J. de Boer, L. Moroni, C. van Blitterswijk, P. Habibovic, Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering. Biomatter 3, e23705 (2013)

  89. R. Ravichandran, J.R. Venugopal, S. Sundarrajan, S. Mukherjee, S. Ramakrishna, Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J. Cardiol. 5, 28–41 (2013)

  90. M. Li, M.J. Mondrinos, X. Chen, Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J. Biomed. Mater. Res. A 79A, 963–973 (2006)

    Google Scholar 

  91. H. Park, M. Radisic, J.O. Lim, A novel composite scaffold for cardiac tissue engineering. In Vitro Cell. Dev. Biol. Anim. 41, 188–196 (2005)

    Google Scholar 

  92. R. Feiner, L. Engel, S. Fleischer, Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 15, 679–685 (2016)

    Google Scholar 

  93. B.W. Streeter, J. Xue, Y. **a, M.E. Davis, Electrospun nanofiber-based patches for the delivery of cardiac progenitor cells. ACS Appl. Mater. Interfaces 11, 18242–18253 (2019)

  94. A.J. Rufaihah, S.R. Vaibavi, M. Plotkin, Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 34, 8195–8202 (2013)

    Google Scholar 

  95. K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015)

  96. D. Bejleri, B.W. Streeter, A.L.Y. Nachlas, M.E. Brown, R. Gaetani, K.L. Christman, M.E. Davis, A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv. Healthc. Mater. 23, 1800672–1800672 (2018)

  97. A. Navaei, D. Truong, J. Heffernan, PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta Biomater. 32, 10–23 (2016)

    Google Scholar 

  98. H. Wang, Y. Feng, B. An, Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. J. Mater. Sci. Mater. Med. 23, 1499–1510 (2012)

    Google Scholar 

  99. T. Dvir, B.P. Timko, M.D. Brigham, Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6, 720–725 (2011)

    Google Scholar 

  100. A. Navaei, H. Saini, W. Christenson, Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater. 41, 133–146 (2016)

    Google Scholar 

  101. A. Borriello, V. Guarino, L. Schiavo, Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J. Mater. Sci. Mater. Med. 22, 1053–1062 (2011)

    Google Scholar 

  102. C.W. Hsiao, M.Y. Bai, Y. Chang, Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34, 1063–1072 (2013)

    Google Scholar 

  103. T.H. Qazi, R. Rai, D. Dippold, Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications. Acta Biomater. 10, 2434–2445 (2014)

    Google Scholar 

  104. D.A. Stout, E. Raimondo, G. Marostica, T.J. Webster, Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation. Biomed. Mater. Eng. 24, 2101–2107 (2014)

  105. N. Annabi, K. Tsang, S.M. Mithieux, M. Nikkhah, A. Ameri, A. Khademhosseini, A.S. Weiss, Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv. Funct. Mater. 23, 4950–4959 (2013)

  106. A. Navaei, K. Rahmani Eliato, R. Ros, The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues. Biomaterials Science 7, 585–595 (2019)

    Google Scholar 

  107. B. Duan, State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann. Biomed. Eng. 45, 195–209 (2017)

  108. V. Serpooshan, J. B. Hu, O. Chirikian, In 3D Printing Applications in Cardiovascular Medicine, S. J. Al’Aref, B. Mosadegh, S. Dunham, Eds. (Academic Press, Boston, 2018), p. 153

  109. J.B. Hu, M.L. Tomov, J.W. Buikema, Cardiovascular tissue bioprinting: physical and chemical processes. Appl. Phys. Rev. 5, 041106 (2018)

    Google Scholar 

  110. V. Serpooshan, M. Mahmoudi, D.A. Hu, J.B. Hu, S.M. Wu, Bioengineering cardiac constructs using 3D printing. J. 3D Printing Med. 1, (2017)

  111. H. Cui, S. Miao, T. Esworthy, X. Zhou, S.j. Lee, C. Liu, Z.x. Yu, J.P. Fisher, M. Mohiuddin, L.G. Zhang, 3D bioprinting for cardiovascular regeneration and pharmacology. Adv. Drug. Deliv. Rev. 132, 252–269 (2018)

  112. B. Mosadegh, G. **ong, S. Dunham, J.K. Min, Current progress in 3D printing for cardiovascular tissue engineering. Biomed. Mater. 10, 034002–034002 (2015)

  113. E. Cimetta, S. Pizzato, S. Bollini, Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed. Microdevices 11, 389–400 (2009)

    Google Scholar 

  114. M. Yamaguchi, K. Ikeda, M. Suzuki, Cell patterning using a template of microstructured organosilane layer fabricated by vacuum ultraviolet light lithography. Langmuir 27, 12521–12532 (2011)

    Google Scholar 

  115. A. Atmanli, D. Hu, I.J. Domian, Molecular etching: a novel methodology for the generation of complex micropatterned growth surfaces for human cellular assays. Adv. Healthc. Mater. 3, 1759–1764 (2014)

    Google Scholar 

  116. S. Sugiura, J.M. Cha, F. Yanagawa, Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. J. Tissue Eng. Regen. Med. 10, 690–699 (2016)

    Google Scholar 

  117. S. Pacharra, R. Ortiz, S. McMahon, Surface patterning of a novel PEG-functionalized poly-l-lactide polymer to improve its biocompatibility: applications to bioresorbable vascular stents. J. Biomed. Mater. Res. B Appl. Biomater. 107, 624–634 (2019)

    Google Scholar 

  118. N. Badie, N. Bursac, Novel micropatterned cardiac cell cultures with realistic ventricular microstructure. Biophys. J. 96, 3873–3885 (2009)

    Google Scholar 

  119. J.J. Kim, L. Hou, N.F. Huang, Vascularization of three-dimensional engineered tissues for regenerative medicine applications. Acta Biomater. 41, 17–26 (2016)

    Google Scholar 

  120. B.W. Lee, B. Liu, A. Pluchinsky, Modular assembly approach to engineer geometrically precise cardiovascular tissue. Adv. Healthc. Mater. 5, 900–906 (2016)

    Google Scholar 

  121. M.R. Salick, B.N. Napiwocki, J. Sha, Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 35, 4454–4464 (2014)

    Google Scholar 

  122. M. Mahmoudi, M. Yu, V. Serpooshan, Multiscale technologies for treatment of ischemic cardiomyopathy. Nat. Nanotechnol. 12, 845–855 (2017)

    Google Scholar 

  123. V. Serpooshan, M. Mahmoudi, Micropatterned nanostructures: a bioengineered approach to mass-produce functional myocardial grafts. Nanotechnology 26, 060501 (2015)

    Google Scholar 

  124. N. Badie, L. Satterwhite, N. Bursac, A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning. Ann. Biomed. Eng. 37, 2510–2521 (2009)

    Google Scholar 

  125. H. Yu, C.Y. Tay, M. Pal, A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation. Advanced Healthcare Materials 2, 442–449 (2013)

    Google Scholar 

  126. M.L. Tomov, Z.T. Olmsted, J.L. Paluh, The human embryoid body cystic core exhibits architectural complexity revealed by use of high throughput polymer microarrays. Macromol. Biosci. 15, 892–900 (2015)

    Google Scholar 

  127. M.L. Tomov, M. Tsompana, Z.T. Olmsted, Human embryoid body transcriptomes reveal maturation differences influenced by size and formation in custom microarrays. J. Nanosci. Nanotechnol. 16, 8978–8988 (2016)

    Google Scholar 

  128. M.D. Guillemette, H. Park, J.C. Hsiao, Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds. Macromol. Biosci. 10, 1330–1337 (2010)

    Google Scholar 

  129. E. Entcheva, H. Bien, Acoustic micromachining of three-dimensional surfaces for biological applications. Lab Chip 5, 179 (2005)

    Google Scholar 

  130. Y. Zhu, V. Serpooshan, S. Wu, U. Demirci, P. Chen, S. Guven, Tissue engineering of 3D organotypic microtissues by acoustic assembly. Methods. Mol. Biol., https://doi.org/10.1007/7651_2017_68 (2017)

  131. L. Tian, N. Martin, P.G. Bassindale, Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat. Commun. 7, 13068 (2016)

    Google Scholar 

  132. A.S. Zhu, K.J. Grande-Allen, Heart valve tissue engineering for valve replacement and disease modeling. Curr. Opin. Biomed. Eng. 5, 35–41 (2018)

    Google Scholar 

  133. A. Liberski, N. Ayad, D. Wojciechowska, D. Zielińska, M.H. Struszczyk, N. Latif, M. Yacoub, Knitting for heart valve tissue engineering. Glob. Cardiol. Sci. Pract. 3, e201631 (2016)

  134. M. Van Lieshout, G. Peters, M. Rutten, A knitted, fibrin-covered polycaprolactone scaffold for tissue engineering of the aortic valve. Tissue Eng. 12, 481–487 (2006)

    Google Scholar 

  135. T.J. Sill, H.A. von Recum, Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29, 1989–2006 (2008)

    Google Scholar 

  136. N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010)

    Google Scholar 

  137. Y.-F. Goh, I. Shakir, R. Hussain, Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J. Mater. Sci. 48, 3027–3054 (2013)

    Google Scholar 

  138. S.A. Sell, M.J. McClure, K. Garg, P.S. Wolfe, G.L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug. Deliv. Rev. 61, 1007–1019 (2009)

  139. B.A. Blakeney, A. Tambralli, J.M. Anderson, Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32, 1583–1590 (2011)

    Google Scholar 

  140. S.P. Schmidt, T.J. Hunter, W.V. Sharp, G.S. Malindzak, M.M. Evancho, Endothelial cell—seeded four-millimeter Dacron vascular grafts: Effects of blood flow manipulation through the grafts. J. Vasc. Surg. 1, 434–441 (1984)

  141. S. Pashneh-Tala, S. MacNeil, F. Claeyssens, The tissue-engineered vascular graft-Past, present, and future. Tissue. Eng. Part. B. Rev. 22, 68–100 (2016)

  142. K.T. Shalumon, P.R. Sreerekha, D. Sathish, H. Tamura, S.V. Nair, K.P. Chennazhi, R. Jayakumar, Hierarchically designed electrospun tubular scaffolds for cardiovascular applications. J. Biomed. Nanotechnol. 7, 609–20 (2011)

  143. P.H. Kim, J.-Y. Cho, Myocardial tissue engineering using electrospun nanofiber composites. BMB Rep. 49, 26–36 (2016)

  144. J. Kopeček, J. Yang, Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. Engl. 51, 7396–7417 (2012)

  145. S. Kyle, A. Aggeli, E. Ingham, M.J. McPherson, Production of self-assembling biomaterials for tissue engineering. Trends. Biotechnol. 27, 423–433 (2009)

  146. S. Zhang, Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20, 321–339 (2002)

  147. M.G. Ryadnov, A. Bella, S. Timson, Modular design of peptide fibrillar nano- to microstructures. J. Am. Chem. Soc. 131, 13240–13241 (2009)

    Google Scholar 

  148. K. Rajagopal, J.P. Schneider, Self-assembling peptides and proteins for nanotechnological applications. Curr. Opin. Struct. Biol. 14, 480–486 (2004)

  149. J. Kopecek, J. Yang, Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. Engl. 51, 7396–7417 (2012)

    Google Scholar 

  150. C. Xu, V. Breedveld, J. Kopecek, Reversible hydrogels from self-assembling genetically engineered protein block copolymers. Biomacromolecules 6, 1739–1749 (2005)

    Google Scholar 

  151.  J. Kopeĉek, Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. Journal of Polymer Science. J .Polym. Sci. A. Polym. Chem. 47, 5929–5946 (2009)

  152. J. Kopeček, Hydrogel biomaterials: A smart future?. Biomaterials 28, 5185–5192 (2007)

  153. M.W. Tibbitt, K.S. Anseth, Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)

  154. V. Serpooshan, P. Ruiz-Lozano, Ultra-rapid manufacturing of engineered epicardial substitute to regenerate cardiac tissue following acute ischemic injury. Methods. Mol. Biol. 1210, 239–248 (2014)

  155. V. Serpooshan, M. Mahmoudi, M. Zhao, Protein corona influences cell-biomaterial interactions in nanostructured tissue engineering scaffolds. Adv. Funct. Mater. 25, 4379–4389 (2015)

    Google Scholar 

  156. K. Dergilev, Z. Tsokolaeva, P. Makarevich, C-kit cardiac progenitor cell based cell sheet improves vascularization and attenuates cardiac remodeling following myocardial infarction in rats. Biomed. Res. Int. 2018, 1–13 (2018)

    Google Scholar 

  157. S. Kamata, S. Miyagawa, S. Fukushima, Improvement of cardiac stem cell sheet therapy for chronic ischemic injury by adding endothelial progenitor cell transplantation: analysis of layer-specific regional cardiac function. Cell Transplant. 23, 1305–1319 (2014)

    Google Scholar 

  158. T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, T. Okano, Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90, e40 (2002)

  159. S. Harada, Y. Nakamura, S. Shiraya, Smooth muscle cell sheet transplantation preserve cardiac function and minimize cardiac remodeling in a rat myocardial infarction model. J. Cardiothorac. Surg. 11, 131 (2016)

    Google Scholar 

  160. S. Masuda, T. Shimizu, Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv. Drug Deliv. Rev. 96, 103–109 (2016)

    Google Scholar 

  161. D. Sasaki, K. Matsuura, H. Seta, Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue. PLoS One 13, e0198026 (2018)

    Google Scholar 

  162. Y. Haraguchi, T. Shimizu, M. Yamato, Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol. Res. Pract. 2011, 1–8 (2011)

    Google Scholar 

  163. A. Furuta, S. Miyoshi, Y. Itabashi, Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ. Res. 98, 705–712 (2006)

    Google Scholar 

  164. Y. Haraguchi, K. Matsuura, T. Shimizu, Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J. Tissue Eng. Regen. Med. 9, 1363–1375 (2015)

    Google Scholar 

  165. L. Zakharova, D. Mastroeni, N. Mutlu, Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res. 87, 40–49 (2010)

    Google Scholar 

  166. S. Sekiya, T. Shimizu, M. Yamato, Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem. Biophys. Res. Commun. 341, 573–582 (2006)

    Google Scholar 

  167. K. Sakaguchi, T. Shimizu, T. Okano, Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering. J. Control. Release 205, 83–88 (2015)

    Google Scholar 

  168. G.A. Saracino, D. Cigognini, D. Silva, Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev. 42, 225–262 (2013)

    Google Scholar 

  169. T. Dvir, B.P. Timko, D.S. Kohane, Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6, 13–22 (2011)

    Google Scholar 

  170. P.P.S.S. Abadi, J.C. Garbern, S. Behzadi, Engineering of mature human induced pluripotent stem cell‐derived cardiomyocytes using substrates with multiscale topography. Adv. Funct. Mater. 28, 1707378 (2018)

    Google Scholar 

  171. M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)

    Google Scholar 

  172. A. Lendlein, M. Behl, B. Hiebl, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 7, 357–379 (2010)

    Google Scholar 

  173. Y. Mao, K. Yu, M.S. Isakov, J. Wu, M.L. Dunn, H. Jerry Qi, Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 5, 105–16 (2015)

  174. A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034 (2002)

    Google Scholar 

  175. C.L. Randall, E. Gultepe, D.H. Gracias, Self-folding devices and materials for biomedical applications. Trends. Biotechnol. 30, 138–146 (2012)

  176. A. Lendlein, S. Kelch, Shape-memory polymers as stimuli-sensitive implant materials. Clin. Hemorheol. Microcirc. 32, 105–16 (2005)

  177. C.M. Yakacki, R. Shandas, C. Lanning, Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28, 2255–2263 (2007)

    Google Scholar 

  178. W. Zhao, L. Liu, F. Zhang, Shape memory polymers and their composites in biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 97, 864–883 (2019)

    Google Scholar 

  179. M.C. Serrano, G.A. Ameer, Recent insights into the biomedical applications of shape-memory polymers. Macromol. Biosci. 12, 1156–71 (2012)

  180. V. Serpooshan, T.M. Quinn, N. Muja, Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomater. 9, 4673–4680 (2013)

    Google Scholar 

  181. V. Serpooshan, T.M. Quinn, N. Muja, Characterization and modelling of a dense lamella formed during self-compression of fibrillar collagen gels: implications for biomimetic scaffolds. Soft Matter 7, 2918 (2011)

    Google Scholar 

  182. V. Serpooshan, N. Muja, B. Marelli, S.N. Nazhat, Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability. J. Biomed. Mater. Res. A. 96, 609–20 (2011)

  183. V. Serpooshan, M. Julien, O. Nguyen, Reduced hydraulic permeability of three-dimensional collagen scaffolds attenuates gel contraction and promotes the growth and differentiation of mesenchymal stem cells. Acta Biomater. 6, 3978–3987 (2010)

    Google Scholar 

  184. C. Liu, Z. **a, J.T. Czernuszka, Design and development of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85, 1051–1064 (2007)

  185. C.-J. Liao, C.-F. Chen, J.-H. Chen, Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J. Biomed. Mater. Res. 59, 676–681 (2002)

    Google Scholar 

  186. T. Johnson, R. Bahrampourian, A. Patel, K. Mequanint, Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Bio-Med. Mater. Eng. 20, 107–18 (2010)

  187. M.G. Haugh, C.M. Murphy, F.J. O'Brien, Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue. Eng. Part. C. Methods 16, 887–94 (2010)

  188. H. Schoof, J. Apel, I. Heschel, Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58, 352–357 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Serpooshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theus, A.S., Tomov, M.L., Cetnar, A. et al. Biomaterial approaches for cardiovascular tissue engineering. emergent mater. 2, 193–207 (2019). https://doi.org/10.1007/s42247-019-00039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00039-3

Keywords

Navigation