Log in

Wetting and corrosion behavior between magnesia–carbon refractory and converter slags with different MgO contents

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence of MgO content in slag on wetting and corrosion behavior between slag and MgO–C refractory was investigated. It can be known from the high-temperature wetting experiment that as the MgO content in the slag increases, the final contact angle between the slag and the MgO–C refractory gradually increases and the penetration depth of the slag into the refractory gradually decreases from 60.54 μm (when the MgO content is 8%) to 28.11 μm (when the MgO content is 12%). The CaO and SiO2 in the slag penetrate into the MgO–C refractory along the pores or surface cracks formed by carbon oxidation and react with MgO to generate a large amount of low-melting compound CaO–MgO–SiO2, which accelerates the corrosion of the refractory. As the MgO content in slag increases, the viscosity of the slag increases and the fluidity becomes worse, so that the mass transfer and diffusion of molecules or ions in the slag are weakened. In addition, the increase in MgO reduces the activity of FeO in the slag, which inhibits the interfacial chemical reaction, thereby weakening the wetting effect caused by the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, W.G. Yang, F. Qian, S.X. Zhao, J.K. Yu, J. Iron Steel Res. Int. 28 (2021) 38–45.

    Article  Google Scholar 

  2. Y. Zou, A. Huang, R. Wang, L. Fu, H. Gu, G. Li, Corros. Sci. 167 (2020) 108517.

    Article  Google Scholar 

  3. A. Huang, Y. Wang, Y. Zou, H. Gu, L. Fu, Ceram. Int. 44 (2018) 14617–14624.

    Article  Google Scholar 

  4. S. Amini, M. Brungs, S. Jahanshahi, O. Ostrovski, ISIJ Int. 46 (2006) 1554–1559.

    Article  Google Scholar 

  5. X. Yang, Z. He, J. Yu, Y. Zhang, L. Yuan, F. Mao, Ceram. Int. 46 (2020) 10180–10185.

    Article  Google Scholar 

  6. S. Riaz, Ironmak. Steelmak. 39 (2012) 409–413.

    Article  Google Scholar 

  7. X.M. Ren, B.Y. Ma, S.M. Li, H.X. Li, G.Q. Liu, S.X. Zhao, W.G. Yang, F. Qian, J.K. Yu, J. Aust. Ceram. Soc. 55 (2019) 913–920.

    Article  Google Scholar 

  8. L.M. Chen, L.F. Zhang, P. Shen, Chin. J. Eng. 40 (2018) 1139–1157.

    Google Scholar 

  9. X. Yang, Y.Y. Zhang, L. Yuan, F.X. Mao, J.K. Yu, Z.J. He, JOM 72 (2020) 3521–3528.

    Article  Google Scholar 

  10. Y.F. Pan, H.X. Zhao, Y. Wu, S.Q. Li, K. Hou, Z.F. Yuan, Iron and Steel 48 (2013) No. 5, 35–40.

    Google Scholar 

  11. J. Park, J. Jeon, K. Lee, J.H. Park, Y. Chung, Metall. Mater. Trans. B 47 (2016) 1832–1838.

    Article  Google Scholar 

  12. D. **e, T. Tran, S. Jahanshahi, High Temp. Mater. Process. 20 (2001) 293–302.

    Article  Google Scholar 

  13. S.M. Seo, D.S. Kim, Y.H. Paik, Met. Mater. Int. 7 (2001) 479–483.

    Article  Google Scholar 

  14. P. Shen, L.F. Zhang, W. Yang, Y. Wang, Iron and Steel 51 (2016) No. 12, 31–40.

    Google Scholar 

  15. Z. Yuan, Y. Wu, H. Zhao, H. Matsuura, F. Tsukihashi, ISIJ Int. 53 (2013) 598–602.

    Article  Google Scholar 

  16. S.H. Heo, K. Lee, Y. Chung, Trans. Nonferrous Met. Soc. China 22 (2012) 870–875.

    Article  Google Scholar 

  17. J. Park, K. Lee, J.J. Pak, Y. Chung, ISIJ Int. 54 (2014) 2059–2063.

    Article  Google Scholar 

  18. Z.Y. Liu, J.K. Yu, X. Yang, E.D. **, L. Yuan, Materials 11 (2018) 883.

    Article  Google Scholar 

  19. Z.Y. Liu, L. Yuan, E.D. **, X. Yang, J.K. Yu, Ceram. Int. 45 (2019) 718–724.

    Article  Google Scholar 

  20. H. Wang, R. Caballero, D. Sichen, J. Eur. Ceram. Soc. 38 (2018) 789–797.

    Article  Google Scholar 

  21. T. Yoon, K. Lee, B. Lee, Y. Chung, ISIJ Int. 57 (2017) 1327–1333.

    Article  Google Scholar 

  22. N. Siddiqi, B. Bhoi, R.K. Paramguru, V. Sahajwalla, O. Ostrovski, Ironmak. Steelmak. 27 (2000) 367–372.

    Article  Google Scholar 

  23. D.Y. Wang, X.B. Li, H.H. Wang, Y. Mi, M.F. Jiang, Y.C. Zhang, J. Non-Cryst. Solids 358 (2012) 1196–1201.

    Article  Google Scholar 

  24. A.A. Kazakov, Russian Metall. 6 (1997) 25–29.

    Google Scholar 

  25. B.J. Monaghan, S.A. Nightingale, Q. Dong, M. Funcik, Engineering 2 (2010) 496–501.

    Article  Google Scholar 

  26. H.H. Wang, Y.J. Xu, K. Jiang, B. Ge, T.P. Qu, D.Y. Wang, Mater. Rep. 31 (2017) No. 20, 96–100.

    Google Scholar 

  27. D. **e, C. Garlick, T. Tran, ISIJ Int. 45 (2005) 175–182.

    Article  Google Scholar 

  28. M. Guo, S. Parada, P.T. Jones, E. Boydens, J.V. Dyck, B. Blanpain, P. Wollants, J. Eur. Ceram. Soc. 29 (2009) 1053–1060.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank team partners from the Research Institute of Mass Energy Optimization and New Technology of Metallurgy for their valuable contribution to this work and preparation of this paper. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51874171 and 51974154) and supported by University of Science and Technology Liaoning talents program (601009840-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-yuan Zhang or Zhi-jun He.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Rq., Liu, Sy., Mao, Fx. et al. Wetting and corrosion behavior between magnesia–carbon refractory and converter slags with different MgO contents. J. Iron Steel Res. Int. 29, 1073–1079 (2022). https://doi.org/10.1007/s42243-021-00695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00695-y

Keywords

Navigation