Log in

Influence of particle size on combustion behavior of bamboo char used for blast furnace injection

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The combustion behavior of bamboo char and its relationship with particle sizes were evaluated using thermo-gravimetric analysis. The results showed that the combustion properties of bamboo char were much better than those of the anthracite used as a coal injected for blast furnace ironmaking due to its porous structure, disordered microcrystalline and higher catalytic index of ash minerals. When the particle size increased from − 0.074 to 0.500–1.000 mm, the ignition temperature and burnout temperature of bamboo char increased, while the combustible index and comprehensive combustion characteristic index decreased slightly. The apparent activation energies of non-isothermal combustion of bamboo char and anthracite were calculated based on the distributed activation energy model. The results showed that the average activation energy was 162.86 kJ/mol for − 0.074 mm anthracite, while it ranged from 71.01 to 89.44 kJ/mol for bamboo chars of different sizes. It revealed that the combustion reactivity of bamboo char in the largest size (0.500–1.000 mm) was much better than that of − 0.074 mm anthracite; thus, the size of biomass char could be enlarged to the maximum size specified by the injection application of blast furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.T. Wang, W. Zhao, M.S. Chu, C. Feng, Z.G. Liu, J. Tang, J. Iron Steel Res. Int. 24 (2017) 751–769.

    Article  Google Scholar 

  2. K.D. Xu, Iron and Steel 45 (2010) No. 3, 1–12.

    Google Scholar 

  3. K.J. Li, J.L. Zhang, Y.P. Zhang, Z.J. Liu, X. Jiang, Chin. J. Process Eng. 14 (2014) 162–172.

    Article  Google Scholar 

  4. C.J. Atkinson, J.D. Fitzgerald, N.A. Hipps, Plant Soil 337 (2010) 1–18.

    Article  Google Scholar 

  5. T. Xu, G.W. Wang, J.L. Zhang, T.F. Song, R.S. Xu, J. Iron Steel Res. Int. 24 (2017) 985–990.

    Article  Google Scholar 

  6. D.B. Huang, Y.B. Zong, R.F. Wei, W. Gao, X.M. Liu, J. Iron Steel Res. Int. 23 (2016) 874–883.

    Article  Google Scholar 

  7. J. Ding, Q.C. Liu, L.J. Jiang, G.Q. Liu, S. Ren, J. Yang, L. YAO, F. Meng, J. Iron Steel Res. Int. 23 (2016) 917–923.

    Article  Google Scholar 

  8. H.Q. Tang, Y.Q. Qin, T.F. Qi, Z.L. Dong, Q.G. Xue, J. Iron Steel Res. Int. 23 (2016) 109–115.

    Article  Google Scholar 

  9. H. Helle, M. Helle, F. Pettersson, H. Saxén, Ironmak. Steelmak. 37 (2010) 590–598.

    Article  Google Scholar 

  10. H. Helle, M. Helle, H. Saxén, F. Pettersson, ISIJ Int. 49 (2009) 1316–1324.

    Article  Google Scholar 

  11. J. Söderman, H. Saxén, F. Pettersson, Comput. Aided Chem. Eng. 26 (2009) 567–571.

    Article  Google Scholar 

  12. W. **ong, G.Q. Wang, S.X. Zhou, Environ. Sci. Technol. 36 (2013) 137–140.

    Google Scholar 

  13. R.N.B. Braga, H.T. Goncalves, R. Santiago, J.D.S.B. Neto, Metal. ABM 42 (1986) 389–394.

    Google Scholar 

  14. R. Nascimento, A. Almeida, E. Oliveira, A. De Jesus, A. De Moraes, in: Proceedings of 3rd International Meeting on Ironmaking and the 2nd International Symposium on Iron Ore, ABM, Sao Luis, 2008, pp. 845–856.

  15. X.G. Bi, C.R. Rao, W. Peng, Henan Metallurgy 20 (2012) No. 3, 1–5.

    Google Scholar 

  16. F. Hanrot, D. Sert, J. Delinchant, R. Pietruck, T. Bürgler, A. Babich, M. Fernández López, R. Álvarez García, M.A. Díez Díaz-Estébanez, in: F.A. López, F. Puertas, F.J. Alguacil, A. Guerrero (Eds.), 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy, Madrid, 2009, pp. 181–184.

  17. J.G.M.S. Machado, E. Osório, A.C.F. Vilela, A. Babich, D. Senk, H.W. Gudenau, Steel Res. Int. 81 (2010) 9–16.

    Article  Google Scholar 

  18. P.S. Assis, C.F. Campos de Assis, H.L. Mendes, in: AISTech 2009-Proceedings of the Iron and Steel Technology Conference, Association for Iron & Steel Technology, Warrendale, 2009, pp. 345–353.

  19. J. Zhang, in: The 7th Korea-China Joint Symposium on Advanced Steel Technology, China Society for Metals, Jeju, Korea, 2015, pp. 26–28.

  20. J. Zhang, G. Wang, R. Xu, C. Zheng, J. Guo, D. Zhao, T. Song, in: 2015 Metallurgical Innovation Symposium, China State Key Laboratory of Advanced Metallurgy, Bei**g, 2015, pp. 25–27.

  21. Z. Liu, B. Mi, P. Wei, Z. Jiang, B. Fei, X. Liu, Eur. J. Wood Prod. 74 (2016) 255–259.

    Article  Google Scholar 

  22. R. Kumar, N. Chandrashekar, J. Forestry Res. 25 (2014) 471–476.

    Article  Google Scholar 

  23. Q. Xu, L. Chen, K.A. Harries, X. Li, Eur. J. Wood Prod. 75 (2017) 161–173.

    Article  Google Scholar 

  24. W. Yang, H. Wang, M. Zhang, J. Zhu, J. Zhou, S. Wu, Bioresour. Technol. 205 (2016) 199–204.

    Article  Google Scholar 

  25. B. Mi, Z. Liu, W. Hu, P. Wei, Z. Jiang, B. Fei, Bioresour. Technol. 209 (2016) 50–55.

    Article  Google Scholar 

  26. Z. Liu, W. Hu, Z. Jiang, B. Mi, B. Fei, Renew. Energy 87 (2016) 346–352.

    Article  Google Scholar 

  27. Z.J. Liu, Z.H. Jiang, B.H. Fei, Z.Y. Cai, X. Liu, Y. Yu, Sci. Silvae Sin. 48 (2012) 140–144.

    Google Scholar 

  28. H. Wang, J. Zhang, G. Wang, D. Zhao, J. Guo, T. Song, Energies 10 (2017) 225.

    Article  Google Scholar 

  29. G. Wang, J. Zhang, J. Shao, Z. Liu, G. Zhang, T. Xu, J. Guo, H. Wang, R. Xu, H. Lin, Energy Convers. Manage. 124 (2016) 414–426.

    Article  Google Scholar 

  30. D. Zhao, J. Zhang, G. Wang, A.N. Conejo, R. Xu, H. Wang, J. Zhong, Appl. Therm. Eng. 108 (2016) 1168–1177.

    Article  Google Scholar 

  31. C. Fan, J. Yan, Y. Huang, X. Han, X. Jiang, Fuel 139 (2015) 502–510.

    Article  Google Scholar 

  32. L. Wang, Y. Guo, Y. Zhu, Y. Qu, Y. Li, C. Rong, Z. Wang, Y. Liu, Thermochim. Acta 512 (2011) 254–257.

    Article  Google Scholar 

  33. J. Cai, S. Wang, C. Kuang, X. Tang, Fuel 203 (2017) 501–513.

    Article  Google Scholar 

  34. G. Wang, J. Zhang, J. Shao, Z. Liu, H. Wang, X. Li, P. Zhang, W. Geng, G. Zhang, Energy 114 (2016) 143–154.

    Article  Google Scholar 

  35. P. Lahijani, Z.A. Zainal, A.R. Mohamed, M. Mohammadi, Bioresour. Technol. 144 (2013) 288–295.

    Article  Google Scholar 

  36. W. Wang, J. Wang, R. Xu, Y. Yu, Y. **, Z. Xue, Fuel Process. Technol. 159 (2017) 118–127.

    Article  Google Scholar 

  37. W. Wang, B. Dai, R. Xu, J. Schenk, J. Wang, Z. Xue, Steel Res. Int. 88 (2017) 1700063.

    Article  Google Scholar 

  38. R.S. Xu, J.L. Zhang, G.W. Wang, H.B. Zuo, Z.J. Liu, K.X. Jiao, Y.X. Liu, K.J. Li, Metall. Mater. Trans. B 47 (2016) 2535–2548.

    Article  Google Scholar 

  39. Z.Y. Gao, L.J. Fang, J. Zhou, W.P. Yan, Power Eng. 22 (2002) 1764–1767.

    Google Scholar 

  40. F.X. Huang, W. Yang, Coal Eng. (2011) No. 10, 103–106.

    Google Scholar 

  41. X.J. He, J.L. Zhang, C.L. Qi, D.W. Kong, C. Ma, W.J. Lu, Iron and Steel 47 (2012) No. 7, 74–79.

    Google Scholar 

  42. A. Soria-Verdugo, L.M. Garcia-Gutierrez, L. Blanco-Cano, N. Garcia-Hernando, U. Ruiz-Rivas, Energy Convers. Manage. 86 (2014) 1045–1049.

    Article  Google Scholar 

  43. X.G. Liu, B.Q. Li, J. Fuel Chem. Technol. 29 (2001) 54–59.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the China Postdoctoral Science Foundation (2016M602378) and National Natural Science Foundation of China (Nos. 51704216 and U1760101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-sheng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Rs., Wang, W. & Dai, Bw. Influence of particle size on combustion behavior of bamboo char used for blast furnace injection. J. Iron Steel Res. Int. 25, 1213–1222 (2018). https://doi.org/10.1007/s42243-018-0186-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0186-0

Keywords

Navigation