Log in

Temperature effect of photovoltaic cells: a review

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The environmental problems caused by the traditional energy sources consumption and excessive carbon dioxide emissions are compressing the living space of mankind and restricting the development of economic society. Renewable energy represented by solar energy has gradually been moved to the forefront of energy development along with the strong support of national policies. Photovoltaic (PV) power generation is the main method in the utilization of solar energy, which uses solar cells (SCs) to directly convert solar energy into power through the PV effect. However, the application and development of SCs are still facing several difficulties, such as high cost, relatively low efficiency, and greater influence from external conditions. Among them, the temperature effect of SCs is related to their power generation efficiency, which is an important factor that needs to be considered in the development of SCs. The temperature effect of SCs will affect the intrinsic properties of SC materials and the parameters that characterize SC performance. This will ultimately affect its power generation efficiency. This work reviews previous studies on temperature effects in SCs. The influence of temperature effect on various parameters characterizing the performance of SCs is discussed, and its mechanism and the latest research progress are shown. It also introduces in detail various methods to deal with the temperature effect of SCs, and analyzes other factors that affect the performance of SCs. This review will help researchers in the design and development of SCs.

Graphical abstract

The temperature effect of PV cells is related to their power generation efficiency, which is an important factor that needs to be considered in the development of PV cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

c-Si:

Crystalline silicon

CB:

Conduction band

CIGS:

Copper indium gallium selenide

CdTe:

Cadmium telluride

CEs:

Counter electrodes

CIGSe:

Cu(In,Ga)Se2

CPV:

Concentrating photovoltaics

CELIV:

Carrier extraction by linearly increasing voltage

DITC:

Dark injection transient current

DC:

Direct current

DSSCs:

Dye-sensitized solar cells

DMOO:

Dynamic multi-objective optimization

ETL:

Electron transport layer

FF:

Fill factor

HS:

Heat sink

Isc :

Short-circuit current

Jsc :

Current density

LID:

Light-induced degradation

m-Si:

Monocrystalline silicon

MJSC:

Multi-junction solar cell

MPP:

Maximum power point

MPPT:

Maximum power point tracking

NFs:

Nanofluids

OSCs:

Organic solar cells

P3HT:

3-Hexylthiophene

PCBM:

[6,6]-Phenyl-C61-butyric acidmethyl ester

PSFPV:

Partially submerged floating photovoltaic system

PV:

Photovoltaic

Pmax :

Maximum power

PSCs:

Perovskite solar cells

PVK:

Perovskite

PCE:

Power conversion efficiency

PC:

Photocurrent

PL:

Photoluminescence

PEG:

Polyethylene glycol

PV/T:

Photovoltaic/thermal

QDSCs:

Quantum dot solar cells

QDs:

Quantum dots

QE:

Quantum efficiency

RC:

Radiative cooling

SCLC:

Space charge limited current

STC:

Standard test conditions

SCs:

Solar cells

TRPL:

Time-resolved photoluminescence

TRPC:

Time-resolved photocurrent

TCO:

Transparent conductive oxide

Ti:

Titanium

TEG:

Thermoelectric generator

TE:

Thermoelectric

UHCPV:

Ultra-high concentration photovoltaic

VB:

Valence band

Voc :

Open-circuit voltage

α-Si:

Amorphous silicon

η:

Photoelectric conversion efficiency

References

  1. Ma Y, **e G, Hooman K (2022) Review of printed circuit heat exchangers and its applications in solar thermal energy. Renew Sustain Energy Rev 155:111933

    Article  Google Scholar 

  2. Li Y, Lan S, Ryberg MW, Pérez-Ramírez J, Wang X (2021) A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. iScience 24:102513

    Article  CAS  Google Scholar 

  3. Vijayan K, Vijayachamundeeswari SP, Sivaperuman K, Ahsan N, Logu T, Okada Y (2022) A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Sol Energy 234:81–102

    Article  CAS  Google Scholar 

  4. Liu Y, Zhang Y, Jia G (2020) Photothermal conversion of Bi2Se3 nanosheets and efficient steam generation by capillary siphoning. Energy Rep 6:1304–1311

    Article  Google Scholar 

  5. Li X, Chang H, Zeng L, Huang X, Li Y, Li R, ** Z (2020) Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors. Energy Convers Manag 226:113515

    Article  CAS  Google Scholar 

  6. Zhang X, Ke R, Wang J, Zhang S, Niu H, Mao C, Song J, ** B, Tian Y (2016) Facile electrosynthesis and photoelectric conversion of Ag nanodendrites wrapped with MoS2 nanosheets. Electrochim Acta 188:917–926

    Article  CAS  Google Scholar 

  7. Hu K, Wang Y, Chen L, Zhao Z, Wang Q (2017) Study on the photoelectric conversion efficiency of solar cells with light trap** arrays. Optik 135:313–319

    Article  CAS  Google Scholar 

  8. Yolchuyeva U, Japharova R, Khamiyev M, Vakhshouri A, Khamiyeva G (2020) Investigation of photochemical conversion processes in aromatic hydrocarbons of Balakhani oil well. J Petrol Sci Eng 196:108089

    Article  Google Scholar 

  9. ** J, Chen Z, Song X, Wu B, Zhang G, Zhang S (2019) Effects of acetylacetone on the thermal and photochemical conversion of benzoquinone in aqueous solution. Chemosphere 223:628–635

    Article  CAS  Google Scholar 

  10. Schwartz R (1993) Photovoltaic power generation. Proc IEEE 81:355–364

    Article  CAS  Google Scholar 

  11. Parvaiz MS, Shah KA, Dar GN, Misra P (2020) Computational modeling of carbon nanotubes for photoresistor applications. Solid State Commun 309:113831

    Article  CAS  Google Scholar 

  12. El-Shabaan MM, Gaml EA (2022) Fluorescent quinoline carboxylate derivative: Study on the optical properties and photo diode application. Phys B 626:413578

    Article  CAS  Google Scholar 

  13. Zeng XY, Luo Q, Li JY, Li YL, Wang W, Li YH, Wu RG, Pan D, Song G, Li JB, Guo ZH, Wang N (2021) A multifunctional pentlandite counter electrode toward efficient and stable sensitized solar cells. Adv Compos Hybrid Mater 4:392–400

    Article  CAS  Google Scholar 

  14. Luo Q, Ma H, Hou QZ, Li YX, Ren J, Dai XZ, Yao ZB, Zhou Y, **ang LC, Du HY, He HC, Wang N, Jiang KL, Lin H, Zhang HW, Guo ZH (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Func Mater 28(11):1706777

    Article  Google Scholar 

  15. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470

    Article  CAS  Google Scholar 

  16. Dizaji MT, Li W (2020) Higher voltage redox flow batteries with hybrid acid and base electrolytes. Eng Sci 11:54–65

    CAS  Google Scholar 

  17. Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13:5373

    Article  CAS  Google Scholar 

  18. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14:2511

    Article  CAS  Google Scholar 

  19. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  20. Tan L, Wei C, Zhang Y, An Y, **ong S, Feng J (2022) Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem Eng J 431:134277

    Article  CAS  Google Scholar 

  21. Zhao J, Wei D, Zhang C, Shao Q, Murugadoss V, Guo Z, Jiang Q, Yang X (2021) An overview of oxygen reduction electrocatalysts for rechargeable Zinc-Air batteries enabled by carbon and carbon composites. Eng Sci 15:1–19

    Google Scholar 

  22. Wolf M (1976) Historical development of solar cells. IEEE Press 274:3842

    Google Scholar 

  23. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032

    Article  CAS  Google Scholar 

  24. Suresh KN, Chandra BNK (2021) A review on perovskite solar cells (PSCs), materials and applications. J Materiomics 7(5):940–956

    Article  Google Scholar 

  25. Kant N, Singh P (2021) Review of next generation photovoltaic solar cell technology and comparative materialistic development. Mater Today Proc (in press)

  26. Tarui H, Tsuda S, Nakano S (1996) Recent progress of amorphous silicon solar cell applications and systems. Renew Energy 8(1–4):390–395

    Article  CAS  Google Scholar 

  27. Yang Y, Hoang MT, Bhardwaj A, Wilhelm M, Mathur S, Wang H (2022) Perovskite solar cells based self-charging power packs: fundamentals, applications and challenges. Nano Energy 94:106910

    Article  CAS  Google Scholar 

  28. Li Y, Yin G, Schmid M (2022) Bifacial semi-transparent ultra-thin Cu(In, Ga)Se2 solar cells on ITO substrate: how ITO thickness and Na do** influence the performance. Sol Energy Mater Sol Cells 234:111431

    Article  CAS  Google Scholar 

  29. Kumar A, Rana A, Vashistha N, Garg KK, Kumar M, Singh RK (2021) Defect density and performance influenced by ozone treatment of ZnO interface in inverted organic solar cell. Sol Energy 225:942–949

    Article  CAS  Google Scholar 

  30. Chatterji N, Antony A, Nair PR (2019) Temperature coefficient of silicon-based carrier selective solar cells. IEEE J Photovolt 9(3):583–590

    Article  Google Scholar 

  31. Luo Q, Wu RG, Ma LT, Wang CJ, Liu H, Lin H, Wang N, Chen Y, Guo ZH (2021) Recent advances on carbon nanotube utilizations in perovskite solar cells. Adv Func Mater 31(6):2004765

    Article  CAS  Google Scholar 

  32. Rasal AS, Yadav S, Kashale AA, Altaee A, Chang J-Y (2022) Stability of quantum dot-sensitized solar cells: a review and prospects. Nano Energy 94:106854

    Article  CAS  Google Scholar 

  33. Lee TD, Ebong AU (2017) A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev 70:1286–1297

    Article  CAS  Google Scholar 

  34. Ahmed H, Elshabasi M, Ohland J, Stölzel M, Weber A, Lechner R, Dalibor T, Parisi J, Schäfer S, Heise SJ (2021) Temperature coefficient characterization of CIGSSe solar cells with layer modifications. Sol Energy Mater Sol Cells 225:111059

    Article  CAS  Google Scholar 

  35. Sriprapha K, Hongsingthong A, Krajangsang T, Inthisang S, Jaroensathainchok S, Limmanee A, Titiroongruang W, Sritharathikhun J (2013) Development of thin film a-SiO:H/a-Si: H double-junction solar cells and their temperature dependence. Thin Solid Films 546:398–403

    Article  CAS  Google Scholar 

  36. Petrovic A, Gojanovic J, Matavulj P, Islam M, Zivanovic S, Piprek J, Willatzen M (2017) Temperature dependence of P3HT:ICBA polymer solar cells. In: International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp 133–134

  37. Bagienski W, Gupta MC (2011) Temperature dependence of polymer/fullerene organic solar cells. Sol Energy Mater Sol Cells 95(3):933–941

    Article  CAS  Google Scholar 

  38. Cao C, Chen X, Wang S, Liu S (2014) High temperature induced mechanical degradation in flexible solar cell and its effect on reliability of the packaging module. In: 2014 15th International Conference on Electronic Packaging Technology, pp 1568–1572

  39. Fernandes JM, Kovendhan M, Muniramaiah R, Purushothamreddy N, Viswanathan E, Paul Joseph D (2021) Effect of substrate temperature on the charge transport property of Ta2O5 cathode buffer layer in inverted polymer solar cells. Mater Lett 298:130038

    Article  CAS  Google Scholar 

  40. Lee H-S, Lee JS, Jung AR, Cha W, Kim H, Son HJ, Cho JH, Kim B (2016) Processing temperature control of a diketopyrrolopyrrole-alt-thieno[2,3-b]thiophene polymer for high-mobility thin-film transistors and polymer solar cells with high open-circuit voltages. Polymer 105:79–87

    Article  CAS  Google Scholar 

  41. Murari NM, Crane MJ, Earmme T, Hwang Y-J, Jenekhe SA (2014) Annealing temperature dependence of the efficiency and vertical phase segregation of polymer/polymer bulk heterojunction photovoltaic cells. Appl Phys Lett 104(22):223906

    Article  Google Scholar 

  42. Shubbak MH (2019) Advances in solar photovoltaics: technology review and patent trends. Renew Sustain Energy Rev 115:109383

    Article  CAS  Google Scholar 

  43. Amrouche B, Guessoum A, Belhamel M (2012) A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison. Appl Energy 91(1):395–404

    Article  Google Scholar 

  44. Fan JCC (1986) Theoretical temperature dependence of solar cell parameters. Solar Cells 17:309–315

    Article  CAS  Google Scholar 

  45. Chakraborty PK, Mondal BN (2018) A note on anomalous band-gap variations in semiconductors with temperature. Indian J Phys 92:303–306

    Article  CAS  Google Scholar 

  46. Dupré O, Vaillon R, Green MA (2015) Physics of the temperature coefficients of solar cells. Sol Energy Mater Sol Cells 140:92–100

    Article  Google Scholar 

  47. Emery K, Burdick J, Caiyem Y, Wanlass MW (1996) Temperature dependence of photovoltaic cells, modules and systems. IEEE Photovolt Spec Conf 1996:5520347

    Google Scholar 

  48. Hossain MI, Bousselham A, Alharbi FH, Tabet N (2017) Computational analysis of temperature effects on solar cell efficiency. J Comput Electron 16(3):1–11

    Article  Google Scholar 

  49. Mäckel H, MacKenzie RCI (2018) Determination of charge-carrier mobility in disordered thin-film solar cells as a function of current density. Phys Rev Appl 9(3):034020

    Article  Google Scholar 

  50. Scott JC, Ramos S, Malliaras GG (1999) Transient space-charge-limited current measurements of mobility in aluminescent polymer. J Imaging Sci Technol 43:233–236

    CAS  Google Scholar 

  51. Spear WE (1983) The study of transport and related properties of amorphous silicon by transient experiments. J Non Cryst Solids 59:1–13

    Article  Google Scholar 

  52. Many A, Rakavy G (1962) Theory of transient space-charge-limited currents in solids in the presence of trap**. Phys Rev 126(6):1980–1988

    Article  CAS  Google Scholar 

  53. Juška G, Arlauskas K, Viliūnas M, Kočka J (2000) Extraction current transients: new method of study of charge transport in microcrystalline silicon. Phys Rev Lett 84(21):4946–4949

    Article  Google Scholar 

  54. Ebenhoch B, Thomson SAJ, Genevičius K, Juška G, Samuel IDW (2015) Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance. Org Electron 22:62–68

    Article  CAS  Google Scholar 

  55. Sarkar A, Rahaman A, Chakraborty K, Pal T, Ghosh S, Banerjee D (2020) Organic heterojunctions of phthalocyanine-reduced graphene oxide above percolation threshold for photovoltaic application. Mater Chem Phys 253:123418

    Article  CAS  Google Scholar 

  56. **ng G, Mathews N, Sun S, Lim SS, Lam YM, Gratzel M (2013) Long-rangebalanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156):344–347

    Article  CAS  Google Scholar 

  57. Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME (2015) Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348(6235):683–768

    Article  Google Scholar 

  58. Vargas C, Yan Z, Coletti G, Chan CE, Rayne DNR, Jensen MA, Hameiri Z (2017) Recombination parameters of lifetime-limiting carrier-induced defects in multicrystalline silicon for solar cells. Appl Phys Lett 110(9):092106

    Article  Google Scholar 

  59. Handa T, Tex DM, Shimazaki A, Wakamiya A, Kanemitsu Y (2017) Charge injection mechanism at heterointerfaces in CH3NH3PbI3 perovskite solar cells revealed by simultaneous time-resolved photoluminescence and photocurrent measurements. J Phys Chem Lett 8(5):954–960

    Article  CAS  Google Scholar 

  60. Prechtel L, Song L, Manus S, Schuh D, Wegscheider W, Holleitner AW (2011) Time-resolved picosecond photocurrents in contacted carbon nanotubes. Nano Lett 11(1):269–272

    Article  CAS  Google Scholar 

  61. Graham MW, Shi SF, Ralph DC, Park J, McEuen PL (2012) Photocurrent measurements of supercollision cooling in graphene. Nat Phys 9(2):103–108

    Article  Google Scholar 

  62. Su Z, Xu S (2017) A generalized model for time-resolved luminescence of localized carriers and applications: dispersive thermodynamics of localized carriers. Sci Rep 7(1):1327

    Google Scholar 

  63. Su ZC, Xu SJ, Wang XH, Ning JQ, Wang R, Lu S, Dong JR, Yang H (2018) Effective photonrecycling and super long lived minority carriers in GaInP/GaAs heterostructuresolar cell: a time-resolved optical study. IEEE J Photovolt 8(3):820–824

    Article  Google Scholar 

  64. Su ZC, Ning JQ, Deng Z, Wang XH, Xu SJ, Wang RX, Lu SL, Dong JR, Yang H (2016) Transition of radiative recombination channels from delocalized states to localized states in a GaInP alloy with partial atomic ordering: a direct optical signature of Mott transition? Nanoscale 8(13):7113–7118

    Article  CAS  Google Scholar 

  65. Su ZC, Xu SJ (2019) Effective lifetimes of minority carriers in time-resolved photocurrent and photoluminescence of a doped semiconductor: modelling of a GaInP solar cell. Sol Energy Mater Sol Cells 193:292–297

    Article  CAS  Google Scholar 

  66. Hu LL, Mandelis A, Yang ZY, Guo XX, Lan XZ, Liu MX, Walters G, Melnikov A, Sargent EH (2017) Temperature-and ligand-dependent carrier transport dynamics in photovoltaic PbS colloidal quantum dot thin films using diffusion-wave methods. Sol Energy Mater Sol Cells 164:135–145

    Article  CAS  Google Scholar 

  67. Kopidakis N, Benkstein KD, Yuan Q, Schiff EA (2006) Temperature dependence of the electron diffusion coefficient in electrolyte-filled TiO2 nanoparticle films: evidence against multiple trap** in exponential conduction-band tails. Phys Rev B 73(4):045326

    Article  Google Scholar 

  68. Haegel N, Christian T, Scandrett C, Norman A, Mascarenhas A, Misra P, Liu T, Soukiassian A, Pickett E, Yuen H (2014) Do** dependence and anisotropy of minority electron mobility in molecular beam epitaxy-grown p type GaInP. Appl Phys Lett 105(20):202116

    Article  Google Scholar 

  69. O’Connor E, Cherkaoui K, Monaghan S, Sheehan B, Povey I, Hurley P (2015) Effect of forming gas annealing on the inversion response and minority carrier generation lifetime of n and p-In0.53Ga0.47As MOS capacitors. Microelectron Eng 147:325–329

    Article  CAS  Google Scholar 

  70. Roy P, Kumar Sinha N, Tiwari S, Khare A (2020) A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Sol Energy 198:665–688

    Article  CAS  Google Scholar 

  71. Li D, King M, Dooner M, Guo S, Wang J (2021) Study on the cleaning and cooling of solar photovoltaic panels using compressed airflow. Sol Energy 221:433–444

    Article  Google Scholar 

  72. Seyyed AS, Jamal F, Mohammad N, Abbas K (2021) The experimental analysis of dust deposition effect on solar photovoltaic panels in Iran’s desert environment. Sustain Energy Technol Assess 47:101542

    Google Scholar 

  73. de Oliveira MCC, Diniz CASA, Viana MM, Lins VDFC (2018) The causes andeffects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) incrystalline silicon photovoltaic modules: a review. Renew Sustain Energy Rev 81:2299–2317

    Article  Google Scholar 

  74. Alves dos Santos SA, Torres JPN, Fernandes CAF, Marques Lameirinhas RA (2021) The impact of aging of solar cells on the performance of photovoltaic panels. Energy Convers Manag 10:100082

    CAS  Google Scholar 

  75. Mohamed A, Khatib T (2014) Correlation for estimating solar cell temperature based on a tropical field operation of a photovoltaic system. In: Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, pp 1–5

  76. Kazem HA, Miqdam CT (2016) The impact of using solar colored filters to cover the PV panel in its outcomes. Sch Bull 2:464–469

    Article  Google Scholar 

  77. Cotfas D, Cotfas P, Machidon O (2018) Study of temperature coefficients for parameters of photovoltaic cells. Int J Photoenergy 1–12

  78. Basher M, Kadhem AA (2018) Effect of solar radiation on photovoltaic cell. Int Res J Adv Eng Sci 3:47–51

    Google Scholar 

  79. Nieto-Nieto LM, Ferrer-RodríguezJuan P, Muñoz-Cerón E, Pérez-Higueras P (2020) Experimental set-up for testing MJ photovoltaic cells under ultra-high irradiance levels with temperature and spectrum control. Measurement 165:108092

    Article  Google Scholar 

  80. Shi JF, Wan QC, Xu G, Xu XQ, Fan Y (2011) Influence of temperature on the properties of polysulfide electrolyte and quantum dot sensitized solar cells. Acta Phys Chim Sin 27(10):2360–2366

    Article  CAS  Google Scholar 

  81. Manju S, Sagar N (2017) Progressing towards the development of sustainable energy: a critical review on the current status, applications, developmental barriers and prospects of solar photovoltaic systems in India. Renew Sustain Energy Rev 70:298–313

    Article  Google Scholar 

  82. Koehl M, Heck M, Wiesmeier S, Wirth J (2011) Modeling of the nominal operating cell temperature based on outdoor weathering. Sol Energy Mater Sol Cells 95(7):1638–1646

    Article  CAS  Google Scholar 

  83. Bailek N, Bouchouicha K, Hassan MA, Slimani A, Jamil B (2020) Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria. Renew Energy 156:57–67

    Article  Google Scholar 

  84. Brano VL, Ciulla G, Franzitta V, Viola A (2012) A novel implicit correlation for the operative temperature of a PV panel. AASRI Procedia 2:112–120

    Article  Google Scholar 

  85. Skoplaki E, Palyvos AJ (2009) On the temperture dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83(5):614–624

    Article  CAS  Google Scholar 

  86. Sudhakar P, Kumaresan G, Velraj R (2017) Experimental analysis of solar photovoltaic unit integrated with free cool thermal energy storage system. Sol Energy 158:837–844

    Article  CAS  Google Scholar 

  87. Rajput UJ, Yang J (2018) Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling. Renew Energy 116:479–491

    Article  CAS  Google Scholar 

  88. Xu L, Li S, Jiang J, Liu T, Wu H, Wang J, Li X (2020) The influence of dust deposition on the temperature of soiling photovoltaic glass under lighting and windy conditions. Sol Energy 199:491–496

    Article  Google Scholar 

  89. Hu W, Li X, Wang J, Tian Z, Zhou B, Wu JP, Li R, Ma N, Kang JX, Wang Y, Tian JL, Dai JB (2022) Experimental research on the convective heat transfer coefficient of photovoltaic panel. Renew Energy 185:820–826

    Article  Google Scholar 

  90. Tiano FA, Rizzo G, Marino M, Monetti A (2020) Evaluation of the potential of solar photovoltaic panels installed on vehicle body including temperature effect on efficiency. eTransportation 5:100067

    Article  Google Scholar 

  91. Khanna S, Sundaram S, Reddy KS, Mallick TK (2017) Performance analysis of perovskite and dye-sensitized solar cells under varying operating conditions and comparison with monocrystalline silicon cell. Appl Therm Eng 127:559–565

    Article  CAS  Google Scholar 

  92. Jošt M, Lipovšek B, Glažar B, Al-Ashouri A, Brecl K, Matič G, Magomedov A, Getautis V, Topič M, Albrecht S (2020) Perovskite solar cells go outdoors: field testing and temperature effects on energy yield. Adv Energy Mater 10(25):2000454

    Article  Google Scholar 

  93. Chen SH, Weng J, Zhang CN, Pan B, Huang Y, Dai SY (2016) Stability study of dye-sensitized solar cells under extreme temperature conditions. Acta Energ Sol Sin 37:12

    CAS  Google Scholar 

  94. Pan B, Weng J, Chen S, Huang Y, Dai S (2014) The effect of partial shading on dye-sensitized solar cell module characteristics. J Phys D Appl Phys 47(47):475503

    Article  Google Scholar 

  95. Baloch AA, Baloch AAB, Gandhidasan P (2016) Uniform cooling of photovoltaic panels: a review. Renew Sustain Energy Rev 57:1520–1544

    Article  Google Scholar 

  96. Royne A, Dey CJ, Mills DR (2005) Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells 86(4):451–483

    Article  CAS  Google Scholar 

  97. Lu X, Zhao Y, Wang Z, Zhang J, Song Y (2016) Influence of environmental temperature and device temperature difference on output parameters of c-Si solar cells. Sol Energy 136:333–341

    Article  CAS  Google Scholar 

  98. Zhai H, Zhang J, Wu Z, **e H, Li Q (2021) Investigation on non-uniform temperature distribution in a solar cell with associated laser beam heating. Sol Energy 213:172–179

    Article  Google Scholar 

  99. Nasby RD, Sanderson RW (1982) Performance measurement techniques for concentrator photovoltaic cells. Solar Cells 6(1):39–47

    Article  CAS  Google Scholar 

  100. Li A, Xuan Q, Pei G, Su Y, Ji J (2018) Effect of non-uniform illumination and temperature distribution on concentrating solar cell - a review. Energy 144:1119–1136

    Article  Google Scholar 

  101. Coventry JS, Franklin E, Blakers A (2002) Thermal and electrical performance of a concentrating PV/Thermal collector: results from the ANU CHAPS collector. Australian National University

    Google Scholar 

  102. Baig H, Heasman KC, Mallick TK (2012) Non-uniform illumination in concentrating solar cells. Renew Sustain Energy Rev 16(8):5890–5909

    Article  Google Scholar 

  103. Gupta DK, Langelaar M (2018) CPV solar cell modeling and metallization optimization. Sol Energy 159:868–881

    Article  Google Scholar 

  104. He Y, Zhou Y, Hu Y, Hung Z (2020) A multiscale-multiphysics integrated model to investigate the coupling effects of non-uniform illumination on concentrated photovoltaic system with nanostructured front surface. Appl Energy 257:113971

    Article  Google Scholar 

  105. Dhaundiyal A (2020) The effect of wind on the temperature distribution of photovoltaic modules. Sol Energy 201(1):259–267

    Article  Google Scholar 

  106. Dabaghzadeh N, Eslami M (2019) Temperature distribution in a photovoltaic module at various mounting and wind conditions: a complete CFD modeling. J Renew Sustain Energy 11(5):053503

    Article  Google Scholar 

  107. Singh P, Khanna S, Mudgal V, Mallick TK, Becerra VM, Hutchinson D, Radulovic J, Radulovic R (2020) Three dimensional analysis of dye-sensitized, perovskite and mono-Si solar photovoltaic cells under non uniform solar flux. Appl Therm Eng 182:115613

    Article  Google Scholar 

  108. Pathi P, Peer A, Biswas R (2017) Nano-photonic structures for light trap** in ultra-thin crystalline silicon solar cells. Nanomaterials 7(1):17

    Article  Google Scholar 

  109. Eberle R, Fell A, Niewelt T, Schindler F, Schubert MC (2019) Analysis of temperature dependent surface recombination properties. In: 15th International Conference on Concentrator Photovoltaic Systems (CPV-15), vol 2147, pp 140001–1–140001–7

  110. Roshi Singh B, Gupta V (2022) Modelling and simulation of silicon solar cells using PC1D. Mater Today Proc 54(3):810–813

    Article  CAS  Google Scholar 

  111. Makhlouf MM, Shehata MM (2022) Multilayer emitter of molybdenum oxide/silver/molybdenum oxide thin films for silicon heterojunction solar cells: Device fabrication and electrical characterization. J Alloy Compd 904:164102

    Article  CAS  Google Scholar 

  112. Li S, Lin G, Li Y, Li Z, Gao W, Cheng Q, Chen C (2018) Fabrication and temperature-dependent performance of aluminum-alloyed back-junction n-type silicon solar cells. Progr Photovolt 26(4):303–309

    Article  CAS  Google Scholar 

  113. Dong Z, Li W, Wang H, Jiang X, Liu H, Zhu L, Chen H (2021) High-temperature perovskite solar cells. Solar RRL 5(9):2100370

    Article  CAS  Google Scholar 

  114. Gallardo JJ, Navas J, Zorrilla D, Alcantara R, Valor D, Fernandez-Lorenzo C, Martin-Calleja J (2016) Micro-Raman spectroscopy for the determination of local temperature increases in TiO2 thin films due to the effect of radiation. Appl Spectrosc 70(7):1128–1136

    Article  Google Scholar 

  115. Kou D, Chen S, Hu L, Wu S, Dai S (2016) Implication of blocking layer functioning with the effect of temperature in dye-sensitized solar cells. J Nanosci Nanotechnol 16(6):5714–5718

    Article  CAS  Google Scholar 

  116. Hussain A, Ahmed R, Ali N, Butt FK, Shaari A, Wan Shamsuri WN, Khenata R, Prakash D, Verma KD (2016) Post annealing effects on structural, optical and electrical properties of CuSbS2 thin films fabricated by combinatorial thermal evaporation technique. Superlattices Microstruct 89:136–144

    Article  CAS  Google Scholar 

  117. Vanalakar SA, Agawane GL, Kamble AS, Hong CW, Patil PS, Kim JH (2015) Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique. Sol Energy Mater Sol Cells 138:1–8

    Article  CAS  Google Scholar 

  118. Paramitha T, Paramitha T, Purwanto A (2015) The effect of sintering and soaking temperature on the dye-sensitized solar cell performance. Mater Sci Forum 827:135–139

    Article  Google Scholar 

  119. Buldu DG, Cantas A, Turkoglu F, Akca FG, Meric E, Ozdemir M, Tarhan E, Ozyuzer L, Aygun G (2018) Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells. Phys Scr 93(2):024002

    Article  Google Scholar 

  120. Ouslimane T, Et-Taya L, Elmaimouni L, Benami A (2021) Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon 7(3):e06379

    Article  CAS  Google Scholar 

  121. Chandel SS, Nagaraju NM, Sharma V, Chandel R (2015) Degradation analysis of 28 yearfield exposed mono-c-Si photovoltaic modules of a direct coupled solar waterpum** system in western Himalayan region of India. Renew Energy 78:193–202

    Article  CAS  Google Scholar 

  122. Bandou F, Hadj AA, Belkaid MS (2013) Test performance electrical of the photovoltaic module in two different environments. Energy Procedia 36:1018–1024

    Article  Google Scholar 

  123. Jurasz J, Ceran B, Orłowska A (2020) Component degradation in small-scale off-grid PV-battery systems operation in terms of reliability, environmental impact and economic performance. Sustain Energy Technol Assess 38:100647

    Google Scholar 

  124. Azizi A, Logerais PO, Omeiri A, Amiar A, Charki A, Riou Q, Delaleux F, Durastanti J (2018) Impact of the aging of a photovoltaic module on the performance of a grid-connected system. Sol Energy 174:445–454

    Article  Google Scholar 

  125. Wang M, Bai SL, Chen AF, Duan YD, Liu QP, Li D, Lin Y (2012) Improved photovoltaic performance of dye-sensitized solar cells by Sb-doped TiO2 photoanode. Electrochim Acta 77:54–59

    Article  CAS  Google Scholar 

  126. Wu CC, Wang K, Batmunkh M, Bati A, Yang D, Jiang YY, Hou YC, Shapter JG, Priya SJ (2020) Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy 70:104480

    Article  CAS  Google Scholar 

  127. Ajayan J, Nirmal D, Mohankumar P, Saravanan M, Jagadesh M, Arivazhagan L (2020) A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct 143:106549

    Article  CAS  Google Scholar 

  128. Li J, Tang XG, Liu QX, Jiang YP, Li WH (2021) Enhancement of the photoelectric properties of composite oxide TiO2-SrTiO3 thin films. Adv Compos Hybrid Mater 5:1557–1565

    Article  Google Scholar 

  129. Yusof N, Baharuddin A (2020) The study of output current in photovoltaics cell in series and parallel connections. Int J Technol Innov Humanit 1:7–12

    Article  Google Scholar 

  130. Ball JM, Petrozza A (2016) Defects in perovskite-halides and their effects in solar cells. Nat Energy 1(11):16149

    Article  CAS  Google Scholar 

  131. Leijtens T, Hoke ET, Grancini G, Slotcavage DJ, Petrozza A (2015) Map** electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv Energy Mater 5(20):1500962

    Article  Google Scholar 

  132. Ni Z, Bao C, Liu Y, Jiang Q, Wu WQ, Chen S, Huang J (2020) Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484):1352–1358

    Article  CAS  Google Scholar 

  133. Shintaku N, Hiramoto M, Izawa S (2018) Effect of trap-assisted recombination on open-circuit voltage loss in phthalocyanine/fullerene solar cells. Org Electron 55:69–74

    Article  CAS  Google Scholar 

  134. Chen C, Hu J, Xu Z, Wang Z, Wang Y, Zeng L, Guo F (2021) Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices. Adv Compos Hybrid Mater 4(14):1261–1269

    Article  CAS  Google Scholar 

  135. Zheng X, Troughtonet J, Bakr OM (2019) Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule 3:1963–1976

    Article  CAS  Google Scholar 

  136. Tong J, Song ZN, Kim DH, Zhu K (2019) Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364:475–479

    Article  CAS  Google Scholar 

  137. Li NX, Tao SX, Chen YH, Onwudinanti C, Hu C, Qiu ZQ, Xu ZQ, Wang L, Yang SH, Brocks G, Chen Q, Zhou HP (2019) Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy 4:408–415

    Article  CAS  Google Scholar 

  138. Wang Y, Wu TH, Barbaud J, Kong WJY, Cui DY, Chen H, Yang XD, Han LY (2019) Stabilizing heterostructures of soft perovskite semiconductors. Science 365:687–691

    Article  CAS  Google Scholar 

  139. Chen M, Ju MG, Garces HF, Carl AD, Carl LK, Hawash Z, Zhang Y, Padture N (2019) Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat Commun 10:16

    Article  CAS  Google Scholar 

  140. Zheng XP, Hou Y, Bao YJ, Yuan FL, Huang ZR, Troughton J, Gasparini N, Alsalloum AY, Maity P, Anthopoulos T, Sargent EH, Bakr OM (2019) Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat Energy 5:1–10

    CAS  Google Scholar 

  141. Yuan HB, Zhang ZQ, Guo TH, Yu LT, Deng ZQ, Zhao R, Zhang J, Zhu YJ (2021) Steric effect of amino-acids as additives for perovskite solar cells. J Alloy Compd 876:160140

    Article  CAS  Google Scholar 

  142. Ren YK, Zhang N, Arain Z, Bozdar MM, Chen J, Sun YJ, Li ZQ (2020) Polymer-induced lattice expansion leads to all-inorganic CsPbBr 3 perovskite solar cells with reduced trap density. J Power Sources 475:228676

    Article  CAS  Google Scholar 

  143. Wu G, Liu Q, Wang J, Sun B (2020) Thermal analysis of water-cooled photovoltaic cell by applying computational fluid dynamics. J Therm Anal Calorim 144(5):1741–1747

    Article  Google Scholar 

  144. Agyekum EB, PraveenKumar S, Alwan NT, Velkin VI, Shcheklein SE (2021) Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon 7(9):e07920

    Article  CAS  Google Scholar 

  145. Soliman AMA, Hassan H (2020) An experimental work on the performance of solar cell cooled by flat heat pipe. J Therm Anal Calorim 146(4):1883–1892

    Article  Google Scholar 

  146. Purwant NK, Badadhe AM (2021) Significance of phase change material and nanofluid in photovoltaic panel cooling technique: SWOC analysis. Mater Today Proc 44:326–335

    Article  CAS  Google Scholar 

  147. An J, Yang EH, Duan F, **ang Y, Yang J (2022) Synthesis and characterization of robust SiO2-phase change materials (PCM) microcapsules. ES Mater Manuf 15:34–45

    CAS  Google Scholar 

  148. **e Y, Yang Y, Liu Y, Wang S, Guo X, Wang H, Cao D (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4:543–551

    Article  CAS  Google Scholar 

  149. Hu X, Wu H, Lu X, Liu S, Qu J (2021) Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv Compos Hybrid Mater 4:478–491

    Article  CAS  Google Scholar 

  150. Huang J, Luo Y, Weng M, Yu J, Sun L, Zeng H, Liu Y, Zeng W, Min Y, Guo Z (2021) Advances and applications of phase change materials (PCMs) and PCMs-based technologies. ES Mater Manuf 13:23–39

    CAS  Google Scholar 

  151. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13(20):4622

    Article  CAS  Google Scholar 

  152. Hu X, Wu H, Liu S, Gong S, Du Y, Li X, Lu X, Qu J (2022) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci 17:1–27

    CAS  Google Scholar 

  153. Zhang C, Shen C, Wei S, Wang Y, Lv G, Sun C (2020) A review on recent development of cooling technologies for photovoltaic modules. J Therm Sci 29(6):1410–1430

    Article  Google Scholar 

  154. Menon GS, Murali S, Elias J, Aniesrani Delfiya DS, Alfiya PV, Samuel MP (2022) Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renew Energy 188:986–996

    Article  CAS  Google Scholar 

  155. Nasef HA, Nada SA, Hassan H (2019) Integrative passive and active cooling system using PCM and nanofluid for thermal regulation of concentrated photovoltaic solar cells. Energy Convers Manag 199:112065

    Article  CAS  Google Scholar 

  156. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528):540–544

    Article  CAS  Google Scholar 

  157. Yang Y, Long L, Meng S, Denisuk N, Chen G, Wang L, Zhu YG (2020) Bulk material based selective infrared emitter for sub-ambient daytime radiative cooling. Sol Energy Mater Sol Cells 211:110548

    Article  CAS  Google Scholar 

  158. Pathak SK, Sharma PO, Goel V, Bhattacharyya S, Aybar HŞ, Meyer JP (2022) A detailed review on the performance of photovoltaic/thermal system using various cooling methods. Sustain Energy Technol Assess 51:101844

    Google Scholar 

  159. Ben Youssef W, Maatallah T, Menezo C, Ben Nasrallah S (2018) Modeling and optimization of a solar system based on concentrating photovoltaic/thermal collector. Sol Energy 170:301–313

    Article  Google Scholar 

  160. Jia Y, Alva G, Fang G (2019) Development and applications of photovoltaic-thermal systems: a review. Renew Sustain Energy Rev 102:249–265

    Article  Google Scholar 

  161. Kursun B (2020) Energy and exergy analysis of a concentrated photovoltaic recuperator design for a geothermal based multi-generation system. Appl Therm Eng 181:115932

    Article  CAS  Google Scholar 

  162. Raja AA, Huang Y (2020) Novel parabolic trough solar collector and solar photovoltaic/thermal hybrid system for multi-generational systems. Energy Convers Manag 211:112750

    Article  CAS  Google Scholar 

  163. Calise F, Dentice M, Palombo A, Vanoli L (2013) Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors. Energy 61:72–86

    Article  CAS  Google Scholar 

  164. Calise F, Dentice M, Piacentino A (2014) A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: dynamic simulation and economic assessment. Energy 67:129

    Article  CAS  Google Scholar 

  165. Yazdanifard F, Ameri M (2018) Exergetic advancement of photovoltaic/thermal systems (PV/T): a review. Renew Sustain Energy Rev 97:529–553

    Article  Google Scholar 

  166. Hachchadi O, Bououd M, Mechaqrane A (2021) Performance analysis of photovoltaic-thermal air collectors combined with a water to air heat exchanger for renewed air conditioning in building. Environ Sci Pollut Res 28:18953–18962

    Article  CAS  Google Scholar 

  167. Rejeb O, Gaillard L, Giroux S, Ghenai C, Jemni A, Bettayeb M, Ménézo C (2019) Novel solar PV/thermal collector design for the enhancement of thermal and electrical performances. Renew Energy 146:610–627

    Article  Google Scholar 

  168. Zhang J, Zhai H, Wu ZH, Wang YY, **e HQ, Zhang MG (2020) Enhanced performance of photovoltaic-thermoelectric coupling devices with thermal interface materials. Energy Rep 6:116–122

    Article  Google Scholar 

  169. Zhang J, Zhai H, Wu ZH, Wang YY, **e HQ (2020) Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance. Sol Energy Mater Sol Cells 215:110666

    Article  CAS  Google Scholar 

  170. Pang W, Yu H, Zhang Y, Yan H (2019) Solar photovoltaic based air cooling system for vehicles. Renew Energy 130:25–31

    Article  CAS  Google Scholar 

  171. Djermane K, Kadri S, Habbab A, Bourbaba E (2019) Numerical investigation of the cooling temperature of the InGaP/InGaAs/Ge subcells under the concentrated illumination. Z Naturforsch A 75:93–101

    Article  Google Scholar 

  172. Li P, Liu X, Cheng Q, Liang Z (2021) Long-term photovoltaic performance of thin-film solar cells with diffractive microlens arrays on glass substrates. Results Phys 21:103841

    Article  Google Scholar 

  173. Choubineh N, Jannesari H, Kasaeian A (2019) Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renew Sustain Energy Rev 101:103–111

    Article  Google Scholar 

  174. Kasaeian A, Khanjari Y, Golzari S, Mahian O, Wongwises S (2017) Effects of forced convection on the performance of a photovoltaic thermal system: an experimental study. Exp Thermal Fluid Sci 85:13–21

    Article  Google Scholar 

  175. Arifin Z, Suyitno S, Tjahjana DDDP, Juwana WE, Putra MRA, Prabowo AR (2020) The effect of heat sink properties on solar cell cooling systems. Appl Sci 10(21):7919

    Article  CAS  Google Scholar 

  176. Shrivastava A, Prakash Arul Jose J, Dilip Borole Y, Saravanakumar R, Sharifpur M, Harasi H, Abdul Razak RK, Afzal A (2022) A study on the effects of forced air-cooling enhancements on a 150 W solar photovoltaic thermal collector for green cities. Sustain Energy Technol Assess 49:101782

    Google Scholar 

  177. Salem Ahmed M, Mohamed ASA, Maghrabie HM (2019) Performance evaluation of combined photovoltaic thermal water cooling system for hot climate regions. J Sol Energy Eng 141(4):041010

    Article  Google Scholar 

  178. Hadipour A, Rajabi Zargarabadi M, Rashidi S (2021) An efficient pulsed- spray water cooling system for photovoltaic panels: experimental study and cost analysis. Renew Energy 164:867–875

    Article  Google Scholar 

  179. Shahverdian MH, Sohani A, Sayyaadi H, Samiezadeh S, Doranehgard MH, Karimi N, Li LKB (2021) A dynamic multi-objective optimization procedure for water cooling of a photovoltaic module. Sustain Energy Technol Assess 45:101111

    Google Scholar 

  180. Elminshawy NAS, Mohamed AMI, Osama A, Amin I, Bassam AM, Oterkus E (2022) Performance and potential of a novel floating photovoltaic system in Egyptian winter climate on calm water surface. Int J Hydrog Energy 47(25):12798–12814

    Article  CAS  Google Scholar 

  181. Soltani S, Kasaeian A, Sarrafha H, Wen D (2017) An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol Energy 155:1033–1043

    Article  CAS  Google Scholar 

  182. Qeays IA, Yahya SM, Asjad M, Khan ZA (2020) Multi-performance optimization of nanofluid cooled hybrid photovoltaic thermal system using fuzzy integrated methodology. J Clean Prod 256:120451

    Article  CAS  Google Scholar 

  183. Wang Y, Wen C, Huang Q, Kang X, Chen M, Wang H (2017) Performance comparison between ethanol phase-change immersion and active water cooling for solar cells in high concentrating photovoltaic system. Energy Convers Manag 149:505–513

    Article  CAS  Google Scholar 

  184. Mousavi S, Kasaeian A, Shafii MB, Jahangir MH (2018) Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system. Energy Convers Manag 163:187–195

    Article  CAS  Google Scholar 

  185. Chaichan MT, Kazem HA, Al-Waeli AHA, Sopian K (2021) Controlling the melting and solidification points temperature of PCMs on the performance and economic return of the water-cooled photovoltaic thermal system. Sol Energy 224:1344–1357

    Article  CAS  Google Scholar 

  186. Zhao B, Hu M, Ao X, Xuan Q, Pei G (2018) Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling. Sol Energy Mater Sol Cells 178:266–272

    Article  CAS  Google Scholar 

  187. Chowdhury FI, Xu Q, Sinha K, Wang X (2021) Cellulose-upgraded polymer films for radiative sky cooling. J Quant Spectrosc Radiat Transfer 272:107824

    Article  CAS  Google Scholar 

  188. Lv S, Ji Y, Qian Z, He W, Hu Z, Liu M (2021) A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler. Energy 219:119625

    Article  Google Scholar 

  189. Wang K, Luo G, Guo X, Li S, Liu Z, Yang C (2021) Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film. Sol Energy 225:245–251

    Article  CAS  Google Scholar 

  190. Tang H, Zhou Z, Jiao S, Zhang Y, Li S, Zhang D, Zhang J, Liu J, Zhao D (2022) Radiative cooling of solar cells with scalable and high-performance nanoporous anodic aluminum oxide. Sol Energy Mater Sol Cells 235:111498

    Article  CAS  Google Scholar 

  191. Soliman AMA, Hassan H (2018) 3D study on the performance of cooling technique composed of heat spreader and microchannels for cooling the solar cells. Energy Convers Manag 170:1–18

    Article  Google Scholar 

  192. Alzahrani M, Roy A, Shanks K, Sundaram S, Mallick TK (2021) Graphene as a pre-illumination cooling approach for a concentrator photovoltaic (CPV) system. Sol Energy Mater Sol Cells 222:110922

    Article  CAS  Google Scholar 

  193. Fan G, Duan B, Zhang Y, Li X, Ji X (2021) Full-spectrum selective thin film based photonic cooler for solar cells of space solar power station. Acta Astronaut 180:196–204

    Article  CAS  Google Scholar 

  194. Gao M, **a Y, Li R, Zhang Z, He Y, Zhang C, Chen L, Qi L, Si Y, Zhang Q, Zheng Y (2020) The design of near-perfect spectrum-selective mirror based on photonic structures for passive cooling of silicon solar cells. Nanomaterials (Basel) 10(12):2483

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52106099) and the Shandong Provincial Natural Science Foundation (ZR2020LLZ004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang or **aohu Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chunlei Sun and Yuan Zou contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Zou, Y., Qin, C. et al. Temperature effect of photovoltaic cells: a review. Adv Compos Hybrid Mater 5, 2675–2699 (2022). https://doi.org/10.1007/s42114-022-00533-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00533-z

Keywords

Navigation