Log in

Relationship Between Weather Conditions and Climate Indices with Rainfed Crop Yield

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Crop yield in rainfed conditions is greatly influenced by meteorological parameters such as rainfall and evapotranspiration. As climate indices (AO, NAO, PNA, NINO-3.4, and AAO) are available for the future months, finding the relationship between crop yield with meteorological parameters and the relationship between meteorological parameters with climate indices can be very useful in predicting annual fluctuations in rainfed crop yield. In the current study, the association between rainfall, PET, and AI with barley and wheat rainfed detrended yields (1990–2016) and the relationship between AI and climate indices (AO, NAO, PNA, NINO-3.4, and AAO) were assessed for Chaharmahal and Bakhtiari province in the west of Iran. All associations were assessed at annual and seasonal (wet and dry seasons) scale considering both concurrent and lag correlations (1-year and 2-year lag). Our results showed a significant correlation between rainfall and AI with crop yields in all study locations except Kouhrang in both annual and wet season time scales. The results indicated that except Kouhrang, where the temperature is a limiting factor to crop yields, in all Chaharmahal and Bakhtiari areas, drought is one of the key factors of annual yield variability (significant correlation between AI and crop yields). The significant correlation between AI with NINO-3.4 and AAO also was observed in both annual and wet season time scales. It seems that NINO-3.4 and AAO indices can be useful to estimate grain yield of rainfed barley and wheat, predict drought occurrence, and take possible actions to counter such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AI:

Aridity index

PET:

Potential evapotranspiration

AO:

Arctic oscillation

NAO:

North Atlantic Oscillation

PNA:

Pacific/North American pattern

AAO:

Antarctic Oscillation

PDSI:

Palmer Drought Severity Index

RAI:

Rainfall Anomaly Index

CMI:

Crop Moisture Index

BMDI:

Bhalme and Mooley Drought Index

SWSI:

Surface Water Supply Index

RI:

National Rainfall Index

SPI:

Standardized Precipitation Index

RDI:

Reclamation Drought Index

References

  • ABM (Australian Bureau of Meteorology). (2013). The Southern annular mode of accessed. http://www.bom.gov.au/climate/sam/

  • Anonymous. (2019). Agricultural Statistics (97 pp.). Publications of the Ministry of Jihad for Agriculture of Iran.

  • Bannayan, M., & Hoogenboom, G. (2008). Weather analogue: A tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach. Environmental Modelling and Software, 23, 703–713.

    Article  Google Scholar 

  • Bannayan, M., Sanjani, S., Alizadeh, A., Lotfabadi, S. S., & Mohamadian, A. (2010). Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118, 105–114.

    Article  Google Scholar 

  • Barlow, M., Cullen, H., & Lyon, B. (2002). Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. Journal of Climate, 15, 697–700.

    Article  Google Scholar 

  • Dai, A., & Wigley, T. M. L. (2000). Global patterns of ENSO-induced precipitation. Geophysical Research Letters, 27, 1283–1286.

    Article  Google Scholar 

  • de Martonne, E. (1926). Une nouvelle function climatologique: L’indice d’aridité. Meteorologie, 2, 449–459.

    Google Scholar 

  • Diaz, H. F. (2000). El Niño and the Southern Oscillation: Multiscale variability and global and regional impacts. Cambridge University Press.

    Book  Google Scholar 

  • Díaz-Solís, H., Grant, W. E., Kothmann, M. M., Teague, W. R., & Díaz-García, J. A. (2009). Adaptive management of stocking rates to reduce effects of drought on cow-calf production systems in semi-arid rangelands. Agricultural Systems, 100, 43–50.

    Article  Google Scholar 

  • Frieler, K., Schauberger, B., Arneth, A., Balkovič, J., Chryssanthacopoulos, J., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., & Müller, C. (2017). Understanding the weather signal in national crop-yield variability. Earth’s Future, 5, 605–616.

    Article  Google Scholar 

  • Ghasemi, A. R., & Khalili, D. (2006). The influence of the Arctic Oscillation on winter temperatures in Iran. Theoretical and Applied Climatology, 85, 149–164.

    Article  Google Scholar 

  • Gong, D., & Wang, S. (1999). Definition of Antarctic oscillation index. Geophysical Research Letters, 26, 459–462.

    Article  Google Scholar 

  • Guarín, A., & Taylor, A. H. (2005). Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. Forest Ecology and Management, 218, 229–244.

    Article  Google Scholar 

  • Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676–679.

    Article  CAS  Google Scholar 

  • Jensen, M.E., Burman, R.D., Allen, R.G. (1990). Evapotranspiration and irrigation water requirements. ASCE.

  • Kafle, H. K., & Bruins, H. J. (2009). Climatic trends in Israel 1970–2002: Warmer and increasing aridity inland. Climate Change, 96, 63–77.

    Article  Google Scholar 

  • Karimzadeh Soureshjani, H., Ghorbani Dehkordi, A., & Bahador, M. (2019a). Temperature effect on yield of winter and spring irrigated crops. Agricultural and Forest Meteorology, 279, 7664.

    Article  Google Scholar 

  • Karimzadeh Soureshjani, H., Nezami, A., Kafi, M., & Tadayon, M. (2019b). Responses of two common bean (Phaseolus vulgaris L.) genotypes to deficit irrigation. Agricultural Water Management, 213, 270–279.

    Article  Google Scholar 

  • Karimzadeh Soureshjani, H., Nezami, A., Kafi, M., & Tadayon, M. (2020). The Effect of Deficit Irrigation on Dry Matter Partitioning, Mobilization and Radiation Use Efficiency of Common Bean (Phaseolus Vulgaris L.). Communications in Soil Science and Plant Analysis, 51, 307–326.

    Article  CAS  Google Scholar 

  • Kiladis, G. N., & Diaz, H. F. (1989). Global climatic anomalies associated with extremes in the Southern Oscillation. Journal of Climate, 2, 1069–1090.

    Article  Google Scholar 

  • LaViola, J.J. (2003). An experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms. In IEEE Virtual Reality, 2003. Proceedings (pp. 283–284). IEEE.

  • Liu, X., Zhang, D., Luo, Y., & Liu, C. (2013). Spatial and temporal changes in aridity index in northwest China: 1960 to 2010. Theoretical and Applied Climatology, 112, 307–316.

    Article  CAS  Google Scholar 

  • Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 14002.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(29), 179–183.

    Google Scholar 

  • McKee, T. B. (1995). Drought monitoring with multiple time scales. In Proceedings of 9th Conference on Applied Climatology. Boston.

  • Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133, 69–88.

    Article  Google Scholar 

  • Nazemosadat, M. J. (2001). Winter drought in Iran: Associations with ENSO. Drought Network News, 13, 1.

    Google Scholar 

  • Nazemosadat, M. J., & Cordery, I. (2000). On the relationships between ENSO and autumn rainfall in Iran. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20, 47–61.

    Article  Google Scholar 

  • NOAA. (2020). National Oceanic and Atmospheric Administration [WWW Document]. https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml.

  • Oba, G. (2001). The effect of multiple droughts on cattle in Obbu, Northern Kenya. Journal of Arid Environment, 49, 375–386.

    Article  Google Scholar 

  • Ogi, M., Tachibana, Y., Yamazaki, K. (2003). Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophysical Research Letter, 30.

  • Rao, V. B., Sá, L. D. A., Franchito, S. H., & Hada, K. (1997). Interannual variations of rainfall and corn yields in Northeast Brazil. Agricultural and Forest Meteorology, 85, 63–74.

    Article  Google Scholar 

  • Romero, C. C., Baigorria, G. A., & Stroosnijder, L. (2007). Changes of erosive rainfall for El Niño and La Niña years in the northern Andean highlands of Peru. Climate Change, 85, 343–356.

    Article  Google Scholar 

  • Ropelewski, C. F., & Halpert, M. S. (1986). North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Monthly Weather Review, 114, 2352–2362.

    Article  Google Scholar 

  • Sun, L., Li, H., Ward, M. N., & Moncunill, D. F. (2007). Climate variability and corn yields in semiarid Ceará, Brazil. Journal of Applied Meteorology and Climatology, 46, 226–240.

    Article  Google Scholar 

  • Thompson, D. W. J., Solomon, S., Kushner, P. J., England, M. H., Grise, K. M., & Karoly, D. J. (2011). Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 741–749.

    Article  CAS  Google Scholar 

  • Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25, 1297–1300.

    Article  Google Scholar 

  • Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78, 2771–2778.

    Article  Google Scholar 

  • UNEP. (1992). United Nations Environment Programme (UNEP). World Atlas Desertif.

    Google Scholar 

  • Weghorst, K. M. (1996). The reclamation drought index: Guidelines and practical applications. Bur Reclamation.

    Google Scholar 

  • Wu, S., Bates, B., Zbigniew Kundzewicz, A. W., & Palutikof, J. (2008). Climate change and water. Tech. Pap. Intergov. Panel Clim. Chang.

    Google Scholar 

  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., & Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114, 9326–9331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedayatollah Karimzadeh Soureshjani.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadeh Soureshjani, H. Relationship Between Weather Conditions and Climate Indices with Rainfed Crop Yield. Int. J. Plant Prod. 15, 541–551 (2021). https://doi.org/10.1007/s42106-021-00160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-021-00160-6

Keywords

Navigation