Log in

Neogene-quaternary evolution from transpressional to transtensional tectonics in Northern Central America controlled by cocos: Caribbean subduction coupling change

  • Research Article
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Aims and Methods

The structural evolution of the western boundary of the Chortis Block, particularly in the Central America Volcanic Arc crossing El Salvador is poorly known. We have done a kinematic analysis from seismic and fault slip data and combined our results with a review of previous regional studies. This approach allowed us to constrain the tectonic evolution and the processes that control the deformation in northern Central America.

Results

Along the active volcanic arc we identified active transtensional deformation. On the other hand, we have identified two deformation phases in the back arc region: A first one of transpressional wrenching close to simple shearing (Miocene); and a second one characterized by almost E–W extension coincident with the extensional direction of the Honduras grabens opening. Our results reveal a change from transpressional to transtensional shearing coeval with a migration of the volcanism towards the trench in Late Miocene times.

Implications

The strain change could be related to a transition from coupled to decoupled interface on the Cocos—Caribbean subduction, which could be caused by a slab roll-back of the Cocos Plate beneath the Chortis Block. The combination of different degrees of coupling on the subduction interface, together with a constant relative eastward drift of the Caribbean Plate, control the deformation style along the western boundary of the Chortis Block.

Resumen

Objetivos y metodología

La evolución estructural del límite oeste del Bloque de Chortís, particularmente en la región del arco volcánico centroamericano cruzando El Salvador, ha sido muy poco estudiada. En este artículo presentamos los resultados de un análisis cinemático junto con una revisión de estudios regionales previos.

Resultados

Esta aproximación nos ha permitido arrojar luz sobre la evolución tectónica y los procesos que controlan la deformación en el norte de Centroamérica. A lo largo del arco volcánico activo hemos identificado deformación transtensiva. Por otro lado, hemos identificado dos fases de deformación en la zona de retro-arco: una primera fase de cizalla transpresiva cercana a la cizalla simple (Mioceno); y una segunda fase caracterizada por una extensión cercana a la dirección E–W que coincide con la dirección de apertura de los grábenes de Honduras. Los resultados de nuestros análisis revelan un cambio de cizalla transpresiva a cizalla transtensiva coetáneo con la migración del arco volcánico hacia la fosa durante el Mioceno Superior.

Implicaciones

El cambio en el estilo de la deformación podría estar relacionado con un decrecimiento en el grado de acoplamiento de la inter-fase Cocos—Caribe, que podría deberse a un proceso de roll-back de la placa del Coco bajo el Bloque de Chortís. La combinación de diferentes grados de acoplamiento en la inter-fase de la subducción, junto con una deriva constante de la placa de Caribe, controlan el estilo de la deformación a lo largo del límite oeste del bloque de Chortís.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agostini, S., Corti, G., Doglioni, C., Carminati, E., Innocenti, F., Tonarini, S., et al. (2006). Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the Berlín and Ahuachapán geothermal areas. Geothermics, 35(4), 368–408. doi:10.1016/j.geothermics.2006.05.003.

    Article  Google Scholar 

  • Allmendinger, R.W., Marrett, R.A., Cladouhos, T. (1994). A program for analyzing fault-slip data on a macintosh computer. Absoft Corp, 1988–2004.

  • Alonso-Henar, J., Álvarez-Gómez, J. A., & Martínez-Díaz, J. J. (2014). Constraints for the recent tectonics of the El Salvador Fault Zone, Central America Volcanic Arc, from morphotectonic analysis. Tectonophysics, 623, 1–13. doi:10.1016/j.tecto.2014.03.012.

    Article  Google Scholar 

  • Alonso-Henar, J., Schreurs, G., Martínez-Díaz, J. J., Álvarez-Gómez, J. A., & Villamor, P. (2015). Neotectonic development of the El Salvador Fault Zone and implication for the deformation in the Central America Volcanic Arc. Insights for 4D analogue experiments. Tectonics. doi:10.1002/2014TC003723.

    Google Scholar 

  • Alvarado, D., DeMets, C., Tikoff, B., Hernández, D., Wawrzyniec, T. F., Pullinger, C., et al. (2011). Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural, and paleo-magnetic observations. Lithosphere, 3(1), 3–21. doi:10.1130/L108.1.

    Article  Google Scholar 

  • Álvarez-Gómez, J.A., (2009). Tectónica activa y geodinámica en el norte de Centro América. Ph.D. Thesis Dpt. Geodinamycs, Universidad Complutense de Madrid, Madrid.

  • Álvarez-Gómez, J. A. (2014). FMC: a one-liner Python program to manage, classify and plot focal mechanisms. Geophysical Research Abstracts, 16, EGU2014-10887.

    Google Scholar 

  • Álvarez-Gómez, J. A., Meijer, P. T., Martínez-Díaz, J. J., & Capote, R. (2008). Constraints from finite element modeling on the active tectonics of northern Central America and the Middle America Trench. Tectonics, 27, TC1008. doi:10.1029/2007TC002162.

    Article  Google Scholar 

  • Angelier, J. (1994). Fault slip analysis and paleostress reconstruction. In P. L. Hancock (Ed.), Continental deformation (pp. 53–100). Oxford: Pergamon.

    Google Scholar 

  • Bosse, H. R., Lorenz, W., Merino, A., Mihm, A., Rode, K., Schmidt-Thomé, M., Wiesemann, G., Weber, H. S., (1978), Geological map of El Salvador Republic: Hannover Germany. Bundesanstalt für Geowissenschaften und Rohstoffe, D-3 scale 1:100,000.

  • Bundschuh, J., and G. E. Alvarado, (2007), Central America. Geology-Resources-Hazards, vol. 1, (1st edn) (p. 663). London: Taylor and Francis

  • Burkart, B., & Self, S. (1985). Extension and rotation of crustal blocks in northern Central America and effect on the volcanic arc. Geology, 13, 22–26. doi:10.1130/0091-7613(1985)13<22:EAROCB>2.0.CO;2.

    Article  Google Scholar 

  • Cáceres, D., Monterroso, D., & Tavakoli, B. (2005). Crustal deformation in northern Central America. Tectonophysics, 404, 119–131. doi:10.1016/j.tecto.2005.05.008.

    Article  Google Scholar 

  • Cailleau, B., LaFemina, P. C., & Dixon, T. H. (2007). Stress accumulation between volcanoes: an explanation for intra-arc earthquakes in Nicaragua? Geophysical Journal International, 169, 1132–1138. doi:10.1111/j.1365-246X.2007.03353.x.

    Article  Google Scholar 

  • Canora, C., Martínez-Díaz, J. J., Villamor, P., Berryman, K., Álvarez-Gómez, J. A., & Capote, D. M. (2014). Structural development of El Salvador Fault Zone. Journal of Iberian Geology, V40(3), 471–488. doi:10.5209/rev_JIGE.2014.v40.n3.43559.

    Google Scholar 

  • Canora, C., Martínez-Díaz, J. J., Villamor, P., Berryman, K., Álvarez-Gómez, J. A., Pullinger, C., et al. (2010). Geological and seismological analysis of the Mw 6.6 13th February 2001 El Salvador earthquake: evidence for surface rupture and implications for seismic hazard. Bulletin of the Seismological Society of America, 100(6), 2873–2890. doi:10.1785/0120090377.

    Article  Google Scholar 

  • Canora, C., Villamor, P., Martínez-Díaz, J. J., Berryman, K., Álvarez-Gómez, J. A., Capote, R., et al. (2012). Paleoseismic analysis of the San Vicente segment of the El Salvador Fault Zone, El Salvador, Central America. Geologica Acta, 10, 103–123. doi:10.1344/105.000001700.

    Google Scholar 

  • Carr, M. J. (1976). Underthrusting and quaternary faulting in northern Central America. Geological Society of America Bulletin, 87, 825–829. doi:10.1130/0016-7606.

    Article  Google Scholar 

  • Cladouhos, T. T., & Allmendinger, R. W. (1993). Finite strain and rotation from fault slip data. Journal of Structural Geology, 15, 771–784. doi:10.1016/0191-8141(93)90061-E.

    Article  Google Scholar 

  • Correa-Mora, F., DeMets, C., Alvarado, D., Turner, H. L., Mattioli, G., Hernández, D., et al. (2009). GPS-derived coupling estimates for Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua. Geophysical Journal International, 179(3), 1279–1291. doi:10.1111/j.1365-246X.2009.04371.x.

    Article  Google Scholar 

  • Corti, G., Carminati, E., Mazzarini, F., & Garcia, M. O. (2005). Active strike-slip faulting in El Salvador, Central America. Geology, 33, 989–992. doi:10.1130/G21992.1.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions: Geophysical Journal International, 181, 1–80. doi:10.1111/j.1365-246X.2009.04491.x.

    Article  Google Scholar 

  • Dewey, J. F., Holdsworth, R. E., & Strachan, R. A. (1998). Transpression and transtension zones. Geological Society London Special Publications, 135, 1–14. doi:10.1144/GSL.SP.1998.135.01.01.

    Article  Google Scholar 

  • Dune, W. M., & Hancock, P. L. (1994). Paleostress analysis of small-scale brittle structures. In P. L. Hancock (Ed.), Continental deformation (pp. 101–120). Oxford: Pergamon.

    Google Scholar 

  • Ehrenborg, J. (1996). A new stratigraphy for the Tertiary volcanic rocks of the Nicaraguan Highland. GSA Bulletin., 7, 830–842. doi:10.1130/0016-7606(1996)108<0830:ANSFTT>2.3.CO;2.

    Article  Google Scholar 

  • Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. doi:10.1016/j.pepi.2012.04.002.

    Article  Google Scholar 

  • Ferrari, L., Orozco-Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the trans-Mexican volcanic belt and the mexico subduction zone. Tectonophysics, 522–523, 122–149. doi:10.1016/j.tecto.2011.09.018.

    Article  Google Scholar 

  • Fossen, F., & Tikoff, B. (1993). The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application for transpression transtension tectonics. Journal of Structural Geology, 105(3–5), 413–422.

    Article  Google Scholar 

  • Franco, A., Lasserre, C., Lyon-Caen, H., Kostoglodov, V., Molina, E., Guzman-Speziale, M., et al. (2012). Fault kinematics in northern central america and coupling along the subduction interface of the cocos plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador. Geophysical Journal International, 189(3), 1223–1236. doi:10.1111/j.1365-246X.2012.05390.x.

    Article  Google Scholar 

  • Funk, J., Mann, P., McIntosh, K., & Stephens, J. (2009). Cenozoic tectonics of the Nicaraguan depression, Nicaragua, and Median Trough, El Salvador, based on seismic reflection profiling and remote-sensing data. Geological Society of America Bulletin., 121(11/12), 1491–1521. doi:10.1130/B26428.1.

    Article  Google Scholar 

  • Garibaldi, N., Tikoff, B., & Hernandez, W. (2016). Neotectonic deformation within an extensional stepover in El Salvador magmatic arc. Central America: Implication for the interaction of arc magmatism and deformation. Tectonophysics. doi:10.1016/j.tecto.

    Google Scholar 

  • Geirsson, H., LaFemina, P. C., DeMets, C., Hernandez, D. A., Mattioli, G. S., Rogers, R., et al. (2015). The 2012 August 27 Mw7. 3 El Salvador earthquake: expression of weak coupling on the Middle America subduction zone. Geophysical Journal International, 202(3), 1677–1689. doi:10.1093/gji/ggv244.

    Article  Google Scholar 

  • Gordon, M. B., & Muehlberger, W. R. (1994). Rotation of the Chortıs block causes dextral slip on the Guayape fault. Tectonics, 13(4), 858–872.

    Article  Google Scholar 

  • Guzman-Speziale, M. (2001). Active seismic deformation in the grabens of northern Central America and its relationship to the relative motion of the North America-Caribbean plate boundary. Tectonophysics, 337, 39–51. doi:10.1016/S0040-1951(01)00110-X.

    Article  Google Scholar 

  • Guzman-Speziale, M., & Meneses-Rocha, J. J. (2000). The North America-Caribbean plate boundary west of the Motagua-Polochic fault system: a fault jog in southeastern Mexico. Journal of South American Earth Sciences, 13, 459–468.

    Article  Google Scholar 

  • Guzman-Speziale, M., Pennington, W. D., & Matumoto, T. (1989). The triple junction of the North America, Cocos, and Caribbean plates: seismicity and tectonics. Tectonics, 8, 981–997.

    Article  Google Scholar 

  • Guzman-Speziale, M., Valdes-Gonzalez, C., Molina, E., & Gomez, J. M. (2005). Seismic activity along the Central America volcanic arc: is it related to subduction of the Cocos plate? Tectonophysics, 400, 241–254. doi:10.1016/j.tecto.2005.03.006.

    Article  Google Scholar 

  • Fossen, H. Tikoff, B. (1998) Extended models of transpression and transtension, and application to tectonic settings. In: Holdsworth, R. E., Strachan, R. A. & Dewey, J. E (eds). Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 15–33. ISBN1-86239-007-X

  • Hernandez-Moreno, C. (2011). Análisis morfotectónico de las deaciones cuaternarias de la cordillera de Jucuarán-Intipucá (El Salvador): Ms Thesis. Madrid: Universidad Compltense de Madrid.

    Google Scholar 

  • Jarrard, R. D. (1986). Relations among subduction parameters. Reviews ofGeophysics, 24, 217–284.

    Article  Google Scholar 

  • Kaverina, A. N., Lander, A. V., & Prozorov, A. G. (1996). Global creepex distribution and its relation to earthquake-source geometry and tectonic origin. Geophysical Journal International, 125(1), 249–265. doi:10.1111/j.1365-246X.1996.tb06549.x.

    Article  Google Scholar 

  • Kobayashi, D., LaFemina, P., Geirsson, H., Chichaco, E., Abrego, A. A., Mora, H., et al. (2014). Kinematics of the western Caribbean: collision of the Cocos Ridge and upper plate deformation. Geochemistry, Geophysics, Geosystems., 15(5), 1671–1683. doi:10.1002/2014GC005234.

    Article  Google Scholar 

  • LaFemina, P., Dixon, T. H., Govers, R., Norabuena, E., Turner, H., Saballos, A., et al. (2009). Fore-arc motion and Cocos Ridge collision in Central America. Geochemistry, Geophysics, Geosystems., 10, Q05S14. doi:10.1029/2008GC002181.

    Article  Google Scholar 

  • Leclère, H., & Fabbri, O. (2013). A new three-dimensional method of fault reactivation analysis. Journal of Structural Geology, 48, 153–161. doi:10.1016/j.jsg.2012.11.004.

    Article  Google Scholar 

  • Leroy, S., Mauffret, A., Patriat, P., & Mercier de Lépinaym, B. (2000). An alternative interpretation of the Cayman trough evolution from a reidentification of magnetic anomalies. Geophysical Journal International, 141, 539–557.

    Article  Google Scholar 

  • Lyon-Caen, H., Barrier, E., Lasserre, C., Franco, A., Arzu, I., Chiquin, L., et al. (2006). Kinematics of the North American–Caribbean–Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system. Geophysical Research Letters, 33(19), 0–L19309. doi:10.1029/2006GL027694.

    Article  Google Scholar 

  • Malfait, B. T., & Dinkelman, M. G. (1972). Circum-Caribbean tectonic and igneous activity and the evolution of the Caribbean Plate. Geological Society of America Bulletin, 83, 251–272.

    Article  Google Scholar 

  • Manea, V., & Gurnis, M. (2007). Subduction zone evolution and low viscosity wedges and channels. Earth and Planetary Science Letters, 264, 22–45. doi:10.1016/j.epsl.2007.08.030.

    Article  Google Scholar 

  • Manea, V. C., Manea, M., & Ferrari, L. (2013). A Geodynamical Perspective on the Subduction of Cocos and Rivera plates beneath Mexico and Central America. Tectonophysics, 609, 56–81. doi:10.1016/j.tecto.2012.12.039.

    Article  Google Scholar 

  • Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12, 973986.

    Article  Google Scholar 

  • Martinez-Diaz, J., Alvarez-Gomez, J., Benito, B., & Hernandez, D. (2004). Triggering of destructive earthquakes in El Salvador. Geology, 32(1), 65–68. doi:10.1130/G20089.1.

    Article  Google Scholar 

  • McBirney, A. R., and H. Williams, (1965), Volcanic history of Nicaragua: publications in geological sciences, vol. 55, (73). Los Angeles:University of California.

  • Muehlberger, W. R., & Ritchie, A. W. (1975). Caribbean-Americas plate boundary in Guatemala and southern Mexico as seen on Skylab IV orbital photography. Geology, 3, 232–235.

    Article  Google Scholar 

  • Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006. doi:10.1029/2007GC001743.

    Article  Google Scholar 

  • Neumann, F. L., Vásquez-Serrano, A., Olson, G.-T., Negrete-Aranda, R., & Contreras, J. (2016). Toroidal, Counter-Toroidal, and Upwelling Flow in the Mantle Wedge of the Rivera and Cocos Plates: Implications for IOB Geochemistry in the Trans-Mexican Volcanic Belt. Pure Appl. Geophys., 173, 3395–3417. doi:10.1007/s00024-015-1218-3.

    Article  Google Scholar 

  • Pacheco, J. F., Sykes, L. R., & Scholz, C. H. (1993). Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research., 98, 14133–14160.

    Article  Google Scholar 

  • Plafker, G. (1976). Tectonic aspects of the Guatemala earthquake of 4 February 1976. Science, 193(4259), 1201–1208.

    Article  Google Scholar 

  • Rodriguez, M., DeMets, C., Rogers, R., Tenorio, C., & Hernandez, D. (2009). A GPS and modeling study of deformation in northern Central America. Geophysical Journal International, 178, 1733–1754. doi:10.1111/j.1365-246X.2009.04251.x.

    Article  Google Scholar 

  • Rogers, R. D., Karason, H., & van der Hilst, R. D. (2002). Epeirogenic uplift above a detached slab in northern Central America. Geology, 30, 1031–1034.

    Article  Google Scholar 

  • Rosencrantz, E., Ross, M. I., & Sclater, J. G. (1988). Age spreading history of the Cayman Trough as determined from depth, heat flow, and magnetic anomalies. Journal of Geophysical Research, 93(B3), 2141–2157.

    Article  Google Scholar 

  • Sanderson, D. J., & Marchini, W. R. D. (1984). Transpression. Journal of Structural Geology, 6, 449–458.

    Article  Google Scholar 

  • Staller, A., Martínez-Díaz, J. J., Benito, B., Alonso-Henar, J., Hernández, D., Hernández-Rey, R., et al. (2016). Present-day crustal deformation along the El Salvador Fault Zone from ZFESNet GPS network. Tectonophysics, 670, 66–81. doi:10.1016/j.tecto.2015.12.017.

    Article  Google Scholar 

  • Turner, H. L., LaFemina, P., Saballos, A., Mattioli, G. S., Jansma, P. E., & Dixon, T. (2007). Kinematics of the Nicaraguan forearc from GPS geodesy. Geophysical Research Letters. doi:10.1029/2006GL027586.

    Google Scholar 

  • Twiss, R. J.,Moores, E. M., (2007), Structural Geology, 2nd ed. 736 pp. New York: W. H. Freeman. ISBN:9780716749516.

  • Twiss, R. J., Protzman, G. M., & Hurst, S. D. (1991). Theory of slickenline patterns based on the velocity gradient tensor and microrotation. Tectonophysics, 186, 215–239.

    Article  Google Scholar 

  • Twiss, R. J., Souter, B. J., & Unruh, J. R. (1993). The effect of block rotations on the global seismic moment tensor and patterns of seismic P and T axes. Journal of Geophysical Research, 98, 645–674.

    Article  Google Scholar 

  • Walker, J.A., Patino, L.C., Cameron, B.I., and Carr, M.J., (2000), Petrogenetic insights provided by compositional transects across the Central American arc: Southeastern Guatemala and Honduras. Journal of Geophysical Research 105:18 949–18 963. doi:10.1029/2000JB900173

  • Weinberg, R. E. (1992). Neotectonic development of western Nicaragua: Tectonics, 11(5), 1010–1017.

    Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic map** tools: Improved version released: Eos Trans. AGU, 94, 409–410.

    Google Scholar 

  • Wilson, D. (1996). Fastest known spreading on the Miocene Cocos-Pacific plate boundary. Geophysical Research Letters, 23, 3003–3006.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the project “INTERGEO” (CGL2013-47412-C2-1-P), “Study of the seismic potential of inter-segment regions in strike-slip active faults using Geological, Geophysical and Geodetic analysis: Applied to the Alhama de Murcia Fault and the El Salvador Fault Zone”. We are grateful to our colleagues at DGOA-MARN (Observatorio Ambiental del Ministerio de Medio Ambiente y Recursos Naturales de El Salvador): Manuel Díaz, Walter Hernandez and Douglas Hernández for their assistance. First author acknowledges his financial support to a PostDoctoral Fellowship from the Youth Employment Initiative of the European Commission. Some figures were produced using GMT software (Wessel et al. 2013). We thank to Carlos Fernandez and an anonymous reviewer their constructive comments that enhanced the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alonso-Henar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Henar, J., Álvarez-Gómez, J.A. & Martínez-Díaz, J.J. Neogene-quaternary evolution from transpressional to transtensional tectonics in Northern Central America controlled by cocos: Caribbean subduction coupling change. J Iber Geol 43, 519–538 (2017). https://doi.org/10.1007/s41513-017-0034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-017-0034-2

Keywords

Palabras clave

Navigation