Log in

\(\alpha\)-clustering effect on flows of direct photons in heavy-ion collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, we reconstruct the \(\gamma\)-photon energy spectrum, which is in good agreement with the experimental data of \(^{86}\)Kr + \(^{12}\)C at E/A = 44 MeV within the framework of the modified EQMD model. The directed and elliptic flows of free protons and direct photons were investigated by considering the \(\alpha\)-clustering structure of \(^{12}\)C. Compared with free protons, direct photon flows provide clearer information about the early stage of a nuclear reaction. The difference in the collective flows between different configurations of \(^{12}\)C is observed in this study. This indicates that the collective flows of direct photons are sensitive to the initial configuration. Therefore, the \(\gamma\) bremsstrahlung process might be taken as an alternative probe to investigate the \(\alpha\)-clustering structure in a light nucleus from heavy-ion collisions within the Fermi-energy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Gamow, Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 126, 632–644 (1930). https://doi.org/10.1098/rspa.1930.0032

    Article  MATH  Google Scholar 

  2. H.A. Bethe, R.F. Bacher, Nuclear physics a. stationary states of nuclei. Rev. Mod. Phys. 8, 82–229 (1936). https://doi.org/10.1103/RevModPhys.8.82

    Article  MATH  Google Scholar 

  3. H.A. Bethe, Nuclear physics b. nuclear dynamics, theoretical. Rev. Mod. Phys. 9, 69–244 (1937). https://doi.org/10.1103/RevModPhys.9.69

    Article  MATH  Google Scholar 

  4. L.R. Hafstad, E. Teller, The alpha-particle model of the nucleus. Phys. Rev. 54, 681–692 (1938). https://doi.org/10.1103/PhysRev.54.681

    Article  Google Scholar 

  5. F. Hoyle, On nuclear reactions occuring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys. J. Suppl. Ser. 1, 121 (1954). https://doi.org/10.1086/190005

    Article  Google Scholar 

  6. S. **, L.F. Roberts, S.M. Austin et al., Enhanced triple-\(\alpha\) reaction reduces proton-rich nucleosynthesis in supernovae. Nature 588, 57 (2020). https://doi.org/10.1038/s41586-020-2948-7

    Article  Google Scholar 

  7. H.L. Liu, D.D. Han, P. Ji et al., Reaction rate weighted multilayer nuclear reaction network. Chin. Phys. Lett. 37, 112601 (2020). https://doi.org/10.1088/0256-307X/37/11/112601

  8. H.L. Liu, D.D. Han, Y.G. Ma, et al., Network structure of thermonuclear reactions in nuclear landscape. Sci. China-Phys. Mech. Astron. 63, 112062 (2020). https://doi.org/10.1007/s11433-020-1552-2

  9. A. Ono, Antisymmetrized molecular dynamics for heavy ion collisions. Prog. Part. Nucl. Phys. 53, 501–581 (2004). https://doi.org/10.1016/j.ppnp.2004.05.002

    Article  Google Scholar 

  10. H. Feldmeier, J. Schnack, Molecular dynamics for fermions. Rev. Mod. Phys. 72, 655–688 (2000). https://doi.org/10.1103/RevModPhys.72.655

    Article  Google Scholar 

  11. T. Maruyama, K. Niita, A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions. Phys. Rev. C 53, 297–304 (1996). https://doi.org/10.1103/PhysRevC.53.297

    Article  Google Scholar 

  12. W.B. He, Y.G. Ma, X.G. Cao et al., Giant dipole resonance as a fingerprint of \(\alpha\) clustering configurations in \(^{12}{\rm C}\) and \(^{16}{\rm O}\). Phys. Rev. Lett. 113, 032506 (2014). https://doi.org/10.1103/PhysRevLett.113.032506

  13. W.B. He, Y.G. Ma, X.G. Cao et al., Dipole oscillation modes in light alpha-clustering nuclei. Phys. Rev. C 94, 014301 (2016). https://doi.org/10.1103/PhysRevC.94.014301

  14. B.S. Huang, Y.G. Ma, W.B. He, Photonuclear reaction as a probe for \(\alpha\)-clustering nuclei in the quasi-deuteron region. Phys. Rev. C 95, 034606 (2017). https://doi.org/10.1103/PhysRevC.95.034606

  15. J. He, S. Zhang, Y.G. Ma et al., Clustering structure effect on Hanbury-BrowncTwiss correlation in \(^{12}\text{C} +^{197}\text{ Au }\)12C+197Au collisions at 200 GeV. Eur. Phys. J. A 56, 52 (2020). https://doi.org/10.1140/epja/s10050-019-00002-0

  16. B.S. Huang, Y.G. Ma, Two-proton momentum correlation from photodisintegration of \(\alpha\)-clustering light nuclei in the quasideuteron region. Phys. Rev. C 101, 034615 (2020). https://doi.org/10.1103/PhysRevC.101.034615

  17. B.S. Huang, Y.G. Ma, Emission time sequence of neutrons and protons as probes of \(\alpha\)-clustering structure. Chin. Phys. C 44, 094105 (2020). https://doi.org/10.1088/1674-1137/44/9/094105

  18. W. Broniowski, E.R. Arriola, Signatures of alpha clustering in light nuclei from relativistic nuclear collisions. Phys. Rev. Lett. 112, 112–501 (2020). https://doi.org/10.1103/PhysRevLett.112.112501

  19. S. Zhang, Y.G. Ma, J.H. Chen et al., Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017). https://doi.org/10.1103/PhysRevC.95.064904

  20. S. Zhang, Y.G. Ma, J.H. Chen et al., Collective flows of \(\alpha\)-clustering 12c + 197au by using different flow analysis methods. Eur. Phy. J. A 54, 161 (2018). https://doi.org/10.1140/epja/i2018-12597-y

    Article  Google Scholar 

  21. S.H. Lim, J. Carlson, C. Loizides et al., Exploring new small system geometries in heavy ion collisions. Phys. Rev. C 99, 04490 (2019). https://doi.org/10.1103/PhysRevC.99.044904

    Article  Google Scholar 

  22. C.C. Guo, Y.G. Ma, Z.D. An et al., Influence of \(\alpha\)-clustering configurations in \(^{16}{\rm O}+{}^{197}{\rm Au}\) collisions at fermi energy. Phys. Rev. C 99, 044607 (2019). https://doi.org/10.1103/PhysRevC.99.044607

  23. C.C. Guo, W.B. He, Y.G. Ma, Collective flows of \(^{16}o+\)\(^{16}o\) collisions with \(\alpha\)-clustering configurations. Chin. Phys. Lett. 34, 092101 (2017). https://doi.org/10.1088/0256-307x/34/9/092101

  24. Y.A. Li, S. Zhang, Y.G. Ma, Signatures of \(\alpha\)-clustering in \(^{16}\rm O\) by using a multiphase transport model. Phys. Rev. C 102, 054907 (2020). https://doi.org/10.1103/PhysRevC.102.054907

  25. W. Reisdorf, H.G. Ritter, Collective flow in heavy-ion collisions. Ann. Rev. Nuclear Particle Sci. 47, 663–709 (1997). ar**v:https://doi.org/10.1146/annurev.nucl.47.1.663, https://doi.org/10.1146/annurev.nucl.47.1.663

  26. N. Herrmann, J.P. Wessels, T. Wienold, Collective flow in heavy-ion collisions. Ann. Rev. Nuclear Particle Sci. 49, 581–632 (1999). ar**v:https://doi.org/10.1146/annurev.nucl.49.1.581, https://doi.org/10.1146/annurev.nucl.49.1.581

  27. A.E. Glassgold, W. Heckrotte, K.M. Watson, Collective excitations of nuclear matter. Ann. Phys. 6, 1–36 (1959). https://doi.org/10.1016/0003-4916(59)90037-5

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Scheid, H. Müller, W. Greiner, Nuclear shock waves in heavy-ion collisions. Phys. Rev. Lett. 32, 741–745 (1974). https://doi.org/10.1103/PhysRevLett.32.741

    Article  Google Scholar 

  29. H.A. Gustafsson, H.H. Gutbrod, B. Kolb et al., Collective flow observed in relativistic nuclear collisions. Phys. Rev. Lett. 52, 1590–1593 (1984). https://doi.org/10.1103/PhysRevLett.52.1590

    Article  Google Scholar 

  30. R.E. Renfordt, D. Schall, R. Bock, et al., Stop** power and collective flow of nuclear matter in the reaction ar+pb at 0.8 gev/u. Phys. Rev. Lett. 53, 763–766 (1984). https://doi.org/10.1103/PhysRevLett.53.763

  31. C.A. Ogilvie, W. Bauer, D.A. Cebra et al., Disappearance of flow and its relevance to nuclear matter physics. Phys. Rev. C 42, R10–R14 (1990). https://doi.org/10.1103/PhysRevC.42.R10

    Article  Google Scholar 

  32. C.L. Zhou, Y.G. Ma, D.Q. Fang et al., Correlation between elliptic flow and shear viscosity in intermediate-energy heavy-ion collisions. Phys. Rev. C 90, 057601 (2014). https://doi.org/10.1103/PhysRevC.90.057601

  33. G.D. Westfall, W. Bauer, D. Craig et al., Mass dependence of the disappearance of flow in nuclear collisions. Phys. Rev. Lett. 71, 1986–1989 (1993). https://doi.org/10.1103/PhysRevLett.71.1986

    Article  Google Scholar 

  34. B.A. Li, A.T. Sustich, Differential flow in heavy-ion collisions at balance energies. Phys. Rev. Lett. 82, 5004–5007 (1999). https://doi.org/10.1103/PhysRevLett.82.5004

    Article  Google Scholar 

  35. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540

    Article  Google Scholar 

  36. C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech. 31, 122 (2020). https://doi.org/10.1007/s41365-020-00829-z

    Article  MathSciNet  Google Scholar 

  37. M. Waqas, F.H. Liu, L.L. Li et al., Effective (kinetic freeze-out) temperature, transverse flow velocity, and kinetic freeze-out volume in high energy collisions. Nucl. Sci. Tech. 31, 109 (2020). https://doi.org/10.1007/s41365-020-00821-7

    Article  Google Scholar 

  38. G.H. Liu, T.Z. Yan, Y.G. Ma et al., Anisotropic flows of nuclear clusters and hard photons in intermediate energy heavy ion collisions. Int. J. Mod. Phys. E 17, 1850–1864 (2008). https://doi.org/10.1142/S0218301308010830

    Article  Google Scholar 

  39. G. Liu, Y.G. Ma, X. Cai et al., Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions. Phys. Lett. B 663, 312–316 (2008). https://doi.org/10.1016/j.physletb.2008.04.037

    Article  Google Scholar 

  40. Y.G. Ma, G.H. Liu, X.Z. Cai et al., Hard-photon flow and photon-photon correlation in intermediate-energy heavy-ion collisions. Phys. Rev. C 85, 024618 (2012). https://doi.org/10.1103/PhysRevC.85.024618

  41. S.S. Wang, Y.G. Ma, X.G. Cao et al., Hard-photon production and its correlation with intermediate-mass fragments in a framework of a quantum molecular dynamics model. Phys. Rev. C 102, 024620 (2020). https://doi.org/10.1103/PhysRevC.102.024620

  42. R. Bertholet, M.K. Njock, M. Maurel et al., High energy gamma-ray production from 44 mev/a 86kr bombardment on nuclei. Nucl. Phys. A 474, 541–556 (1987). https://doi.org/10.1016/0375-9474(87)90630-0

    Article  Google Scholar 

  43. C.Z. Shi, Y.G. Ma, X.G. Cao et al., Direct photon emission and influence of dynamical wave packets in an extended quantum molecular dynamics model. Phys. Rev. C 102, 014601 (2020). https://doi.org/10.1103/PhysRevC.102.014601

  44. A. Ono, H. Horiuchi, T. Maruyama et al., Antisymmetrized version of molecular dynamics with two nucleon collisions and its application to heavy ion reactions. Prog. Theor. Phys. 87, 1185–1206 (1992). https://doi.org/10.1143/PTP.87.1185

    Article  Google Scholar 

  45. W. Bauer, G.F. Bertsch, W. Cassing et al., Energetic photons from intermediate energy proton- and heavy-ion-induced reactions. Phys. Rev. C 34, 2127–2133 (1986). https://doi.org/10.1103/PhysRevC.34.2127

    Article  Google Scholar 

  46. A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671–1678 (1998). https://doi.org/10.1103/PhysRevC.58.1671

    Article  Google Scholar 

  47. Y.G. Ma, W.Q. Shen, J. Feng et al., Rotational behavior in intermediate-energy heavy-ion collisions. Phys. Rev. C 48, R1492–R1496 (1993). https://doi.org/10.1103/PhysRevC.48.R1492

    Article  Google Scholar 

  48. Y.G. Ma, W.Q. Shen, Correlation-functions and the disappearance of rotational collective motion in nucleus-nucleus collisions below 100 mev/nucleon. Phys. Rev. C 51, 3256–3263 (1995). https://doi.org/10.1103/PhysRevC.48.R1492

    Article  Google Scholar 

  49. T. Furuta, K.H.O. Hasnaoui, F. Gulminelli, et al., Monopole oscillations in light nuclei with a molecular dynamics approach. Phys. Rev. C 82. https://doi.org/10.1103/PhysRevC.82.034307

  50. G.Q. Zhang, Y.G. Ma, X.G. Cao, et al., Unified description of nuclear stop** in central heavy-ion collisions from 10 A MeV to 1.2 A GeV. Phys. Rev. C 84, 034612 (2011). https://doi.org/10.1103/PhysRevC.84.034612

  51. H. Nifenecker, J. Bondorf, Nuclear electromagnetic bremsstrahlung: a new tool for studying heavy-ion reactions. Nucl. Phys. A 442, 478–508 (1985). https://doi.org/10.1016/S0375-9474(85)80028-2

    Article  Google Scholar 

  52. N. Gan, K.T. Brinkmann, A.L. Caraley et al., Neutron-proton bremsstrahlung from low-energy heavy-ion reactions. Phys. Rev. C 49, 298–303 (1994). https://doi.org/10.1103/PhysRevC.49.298

    Article  Google Scholar 

  53. S.S. Wang, Y.G. Ma, X.G. Cao et al., Azimuthal anisotropy and multiplicities of hard photons and free nucleons in intermediate-energy heavy-ion collisions. Eur. Phys. J. A 56, 254 (1993). https://doi.org/10.1140/epja/s10050-020-00264-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (No. 2020B0301030008), the National Natural Science Foundation of China (Nos. 11890710, 11890714, and 11961141003), and the Strategic Priority Research Program of the CAS (No. XDB34000000).

Appendix

Appendix

Strictly speaking, one should sample adequate times according to the Wigner function of a nucleon as follows:

$$\begin{aligned} \begin{aligned} w_i({{\mathbf {r}}})=&\rho _{i}({\mathbf {r}}) \\ =&\left( \frac{1}{\pi \lambda _i}\right) ^\frac{3}{2}\exp \left\{ -\frac{1}{\lambda _i}\left( \mathbf {r-{\mathbf {R}}_i}\right) ^2 \right\}, \\ w_i({{\mathbf {p}}})=&\frac{w_i({\mathbf {r}},{\mathbf {p}})}{\rho _{i}({\mathbf {r}})} \\ =&\left( \frac{\lambda _i}{\pi \hbar ^2}\right) ^\frac{3}{2}\exp \left\{ -\frac{\lambda _i}{\hbar ^2}\left[ {\mathbf {p}}-\left( {\mathbf {P}}_i+\delta _i\hbar {\mathbf {R}}_i-\delta _i\hbar {\mathbf {r}}\right) \right] ^2\right\} . \end{aligned} \end{aligned}$$
(17)

Herein, \(w_i({\mathbf {r}})\) is the probability that the ith nucleon is at point \({\mathbf {r}}\), and \(w_i({\mathbf {p}})\) represents the probability of this nucleon with momentum \({\mathbf {p}}\) when its position is known at \({\mathbf {r}}\). It is easy to obtain certain quantities from Eq.17 as follows:

$$\begin{aligned} \begin{aligned} \overline{{\mathbf {r}}}\,=\,&{\mathbf {R}}_i, \\ \overline{{\mathbf {r}}^2}\,=\,&{\mathbf {R}}_i^2+\frac{3}{2}\lambda _i, \\ \overline{{\mathbf {p}}}\,=\,&{\mathbf {P}}_i, \\ \overline{{\mathbf {p}}^2}\,=\,&\overline{\left[ {\mathbf {P}}_i-\delta _i\hbar \left( {\mathbf {r}}-{\mathbf {R}}_i\right) \right] ^2}+\frac{3\hbar ^2}{2\lambda _i}\\ \,=\,&{\mathbf {P}}_i^2+\overline{\delta ^2_i\hbar ^2\left( {\mathbf {r}}-{\mathbf {R}}_i\right) ^2}+\frac{3\hbar ^2}{2\lambda _i}\\ \,=\,&{\mathbf {P}}_i^2+\frac{3\hbar ^2}{2\lambda _i}\left( 1+\lambda _i^2\delta _i^2\right). \end{aligned} \end{aligned}$$
(18)

We also consider the zero-pointer kinetic energy into momentum sampling, our formulation is as follows:

$$\begin{aligned} \begin{aligned} \Delta {\mathbf {p}}\,=\,&{\mathbf {p}}-{\mathbf {P}}_i, \\ {\mathbf {p}}_i=&{\mathbf {P}}_i+\sqrt{1-\frac{1}{M_i}}\times \Delta {\mathbf {p}}. \end{aligned} \end{aligned}$$
(19)

Here, \({\mathbf {p}}_i\) is the momentum of the nucleon after its zero-point kinetic energy is considered.

If one samples the coordinate and momentum adequately, the following can be easily proven:

$$\begin{aligned} \begin{aligned} \overline{{\mathbf {p}}_i^2}=&\overline{\left( {\mathbf {P}}_i+\sqrt{1-\frac{1}{M_i}}\times \Delta {\mathbf {p}}\right) ^2}\\ =&{\mathbf {P}}_i^2+\left( 1-\frac{1}{M_i}\right) \times \frac{3\hbar ^2}{2\lambda _i}\left( 1+\lambda _i^2\delta _i^2\right), \\ \overline{T_i}=&\frac{{\mathbf {P}}_i^2}{2m_i}+\left( 1-\frac{1}{M_i}\right) \times \frac{3\hbar ^2}{4m_i\lambda _i}\left( 1+\lambda _i^2\delta _i^2\right) \\ =&\frac{{\mathbf {P}}_i^2}{2m_i}+\frac{3\hbar ^2\left( 1+\lambda _i^2\delta _i^2\right) }{4m_i\lambda _i}-T_\mathrm {zero}. \end{aligned} \end{aligned}$$
(20)

Thus far, this proves that the kinetic energy obtained by this sampling method is consistent with the expected kinetic energy described by the Hamilton of the EQMD model. This part of the kinetic energy is dominant, namely in the “Fermi-motion” question in the study by Maruyama et al. [11]. In the actual calculation, it should be noted that there is an appropriate simplification for simulation purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, CZ., Ma, YG. \(\alpha\)-clustering effect on flows of direct photons in heavy-ion collisions. NUCL SCI TECH 32, 66 (2021). https://doi.org/10.1007/s41365-021-00897-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00897-9

Keywords

Navigation