Log in

Preliminary neutron study of a thorium-based molten salt energy amplifier

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Present designs for molten salt thermal reactors require complex online processing systems, which are technologically challenging, while an accelerator-driven subcritical molten salt system can operate without an online processing system, simplifying the design. Previous designs of accelerator-driven subcritical systems usually required very high-power proton accelerators (> 10 MW). In this research, a proton accelerator is used to drive a thorium-based molten salt fast energy amplifier (TMSFEA) that improves the neutron efficiency of the system. The research results show that TMSFEA can achieve a long-term stable state for more than 30 years with a rated power of 300 MW and a stabilizing effective multiplication factor (keff) without any online processing. In this study, a physical design of an integrated molten salt energy amplifier with an initial energy gain of 117 was accomplished. According to the burn-up calculation, a molten salt energy amplifier with the rated power of 300 MWth should be able to operate continuously for nearly 40 years using a 1 GeV proton beam below 4 mA during the lifetime. By the end of the life cycle, the energy gain can still reach 76, and 233U contributes 70.9% of the total fission rate, which indicates the efficient utilization of the thorium fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Rubbia, C. Roche, J.A. Rubio, et al. Conceptual design of a fast neutron operated high power energy amplifier. Internal Report CERN. Switzerland: CERN, 1995. (Report No.: CERN-AT-95-44-ET)

  2. C. Rubbia, S. Buono, E. Gonzalez, et al. in A realistic Plutonium Elimination Scheme with Fast Energy Amplifiers and Thorium-Plutonium Fuel, in Advanced Nuclear Systems Consuming Excess Plutonium, ed. by E.R. Merz, C.E. Walter (Springer, Dordrecht, 1997), pp. 89–134

  3. H. Nifenecker, S. David, J.M. Loiseaux et al., Basics of accelerator driven subcritical reactors. Nucl. Instrum. Methods Phys. Res., Sect. A. 463(3), 428–467 (2001). https://doi.org/10.1016/S0168-9002(01)00160-7

    Article  Google Scholar 

  4. P.A. Gokhale, S. Deokattey, V. Kumar, Accelerator driven systems (ADS) for energy production and waste transmutation: international trends in R&D. Prog. Nucl. Energy 48(2), 91–102 (2006). https://doi.org/10.1016/j.pnucene.2005.09.006

    Article  Google Scholar 

  5. W. Maschek, X. Chen, F. Delage et al., Accelerator driven systems for transmutation: fuel development, design and safety. Prog. Nucl. Energy 50(2–6), 333–340 (2008). https://doi.org/10.1016/j.pnucene.2007.11.066

    Article  Google Scholar 

  6. P. McIntyre, S. Assadi, K. Badgley et al., Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy. AIP Conf. Proc. 1525(1), 636–642 (2013). https://doi.org/10.1063/1.4802405

    Article  Google Scholar 

  7. C.D. Bowman, E.D. Arthur, P.W. Lisowski et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instrum. Methods Phys. Res., Sect. A. 320(1–2), 336–367 (1992). https://doi.org/10.1016/0168-9002(92)90795-6

    Article  Google Scholar 

  8. A.M. Degtyarev, A.K. Kalugin, L.I. Ponomarev, Cascade subcritical molten salt reactor (CSMSR): main features and restrictions. Prog. Nucl. Energy 1(47), 99–105 (2005). https://doi.org/10.1016/j.pnucene.2005.05.008

    Article  Google Scholar 

  9. X.C. Zhao, D.Y. Cui, X.Z. Cai et al., Analysis of Th–U breeding capability for an accelerator-driven subcritical molten salt reactor. Nucl. Sci. Tech. 29, 121 (2018). https://doi.org/10.1007/s41365-018-0448-3

    Article  Google Scholar 

  10. X.C. Zhao, X.Z. Cai, J.G. Chen, Study of the neutronics performance of molten salt fuel in an accelerator driven subcritical reactor. Nucl. Tech. 41(8), 080601 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.080601. (in Chinese)

    Article  Google Scholar 

  11. E. Merle-Lucotte, M. Allibert, M. Brovchenko et al., Introduction to the physics of thorium molten salt fast reactor (MSFR) concepts. Thorium Energy for the World (Springer, Cham, 2016), pp. 223–231. https://doi.org/10.1007/978-3-319-26542-1_34

    Book  Google Scholar 

  12. V. Ignatiev, O. Feynberg, I. Gnidoi, et al. Progress in development of Li, Be, Na/F Molten salt actinide recycler & transmuter concept, in Proceeding of ICAPP, Nice, France (2007)

  13. IAEA. Advances in small modular reactor technology developments, in IAEA Advanced Reactors Information System (ARIS) (2018), pp. 217–220

  14. A. Huke, G. Ruprecht, D. Weißbach et al., The dual fluid reactor-a novel concept for a fast nuclear reactor of high efficiency. Ann. Nucl. Energy 80, 225–235 (2015). https://doi.org/10.1016/j.anucene.2015.02.016

    Article  Google Scholar 

  15. G.F. Zhu, Y. Zou, R. Yan et al., Low enriched uranium and thorium fuel utilization under once-through and offline reprocessing scenarios in small modular molten salt reactor. Int. J. Energy Res. 43(11), 5775–5787 (2019). https://doi.org/10.1002/er.4676

    Article  Google Scholar 

  16. M.L. Tan, G.F. Zhu, Y. Zou et al., Research on the effect of the heavy nuclei amount on the temperature reactivity coefficient in a small modular molten salt reactor. Nucl. Sci. Tech. 30, 140 (2019). https://doi.org/10.1007/s41365-019-0666-3

    Article  Google Scholar 

  17. X.Z. Cai, Z.M. Dai, H.J. Xu, Thorium molten salt reactor nuclear energy system. Physics 45(9), 578–590 (2016). https://doi.org/10.7693/wl20160904. (in Chinese)

    Article  Google Scholar 

  18. S.H. Yu, Y.F. Liu, P. Yang et al., Effect analysis of core structure changes on reactivity in molten salt experimental reactor. Nucl. Tech. 42(02), 020603 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.020603. (in Chinese)

    Article  Google Scholar 

  19. G.F. Zhu, R. Yan, S.H. Yu et al., An application of direct statistical method for kinetics parameters in TMSR-SF1. Nucl. Tech. 41(05), 050603 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.050603. (in Chinese)

    Article  Google Scholar 

  20. R.M. Ji, R. Yan, X.X. Li et al., Effect of TRISO-particles distributions in pebble fuel. Nucl. Tech. 40(10), 100604 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.100604. (in Chinese)

    Article  Google Scholar 

  21. K. Furukawa, K. Tsukada, Y. Nakahara, Single-fluid-type accelerator molten-salt breeder concept. J. Nucl. Sci. Technol. 18(1), 79–81 (1981). https://doi.org/10.3327/jnst.18.79

    Article  Google Scholar 

  22. K. Furukawa, Y. Kato, T. Ohmichi, et al. Combined system of accelerator molten-salt breeder (AMSB) and molten-salt converter reactor (MSCR), in Japan-US Seminar on Th Fuel Reactors, Nara (1983), pp. 23–29

  23. K. Furukawa, Y. Kato, S.E. Chigrinov, Plutonium (TRU) transmutation and 233U production by single-fluid type accelerator molten-salt breeder (AMSB). AIP Conf. Proc. 346(1), 745–751 (1995). https://doi.org/10.1063/1.49112

    Article  Google Scholar 

  24. C.D. Bowman, Once-through thermal-spectrum accelerator-driven light water reactor waste destruction without reprocessing. Nucl. Technol. 132(1), 66–93 (2000). https://doi.org/10.13182/NT00-1

    Article  Google Scholar 

  25. Slessarev, V. Berthou, M. Salvatores, et al. Concept of the thorium fuelled accelerator driven subcritical system for both energy production and TRU incineration-’TASSE’ (1999)

  26. H. Katsuta, T. Sasa, T. Takizuka, et al. A concept of accelerator based incineration system for transmutation of TRU and FP with liquid TRU-alloy target and molten salt blanket, in Emerging nuclear energy systems (1994)

  27. F. Carminati, C. Roche, J.A. Rubio, et al. An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator. No. CERN-AT-93-47-ET. P00019698 (1993)

  28. M. Salvatores, I. Slessarev, A. Tchistiakov et al., The potential of accelerator-driven systems for transmutation or power production using thorium or uranium fuel cycles. Nucl. Sci. Eng. 126(3), 333–340 (1997). https://doi.org/10.13182/NSE97-A24485

    Article  Google Scholar 

  29. W.S. Yang, Fast reactor physics and computational methods. Nucl. Eng. Technol. 44(2), 177–198 (2012). https://doi.org/10.5516/NET.01.2012.504

    Article  Google Scholar 

  30. D. Leblanc, Molten salt reactors: a new beginning for an old idea. Nucl. Eng. Des. 240(6), 1644–1656 (2010). https://doi.org/10.1016/j.nucengdes.2009.12.033

    Article  Google Scholar 

  31. V.N. Desyatnik, M.P. Vorobei, N.N. Kurbatov et al., Melting diagrams of ternary systems containing sodium and potassium chlorides, thorium tetrachloride, and plutonium trichloride. Sov. At. Energy. 38(3), 219–221 (1975). https://doi.org/10.1007/BF01666673

    Article  Google Scholar 

  32. E. Indacochea, J.L. Smith, K.R. Litko et al., High-temperature oxidation and corrosion of structural materials in molten chlorides. Oxid. Met. 55, 1–16 (2001). https://doi.org/10.1023/A:1010333407304

    Article  Google Scholar 

  33. D.E. Holcomb, G.F. Flanagan, B.W. Patton, et al. Fast spectrum molten salt reactor options. Oak Ridge National Lab., ORNL/TM-2011/105, 2011

  34. A. Mourogov, P.M. Bokov, Potentialities of the fast spectrum molten salt reactor concept: REBUS-3700. Energy Conv. Manag. 47(17), 2761–2771 (2006). https://doi.org/10.1016/j.enconman.2006.02.013

    Article  Google Scholar 

  35. K. Yamate, S. Abeta, K. Suzuki. MOX fuel design and development consideration. No. IAEA-TECDOC--941 (1997)

  36. T. Goorley, M. James, T. Booth et al., Initial MCNP6 release overview. Nucl. Technol. 180(3), 298–315 (2012). https://doi.org/10.13182/NT11-135

    Article  Google Scholar 

  37. A.G. Croff, ORIGEN2: a revised and updated version of the Oak Ridge isotope generation and depletion code (Oak Ridge National Lab, Oak Ridge, 1980)

    Book  Google Scholar 

  38. I. Slessarev, A. Tchistiakov. IAEA ADS-benchmark results and analysis. TCM-Meeting, Madrid, Spain, Madrid (1997)

  39. P. Seltborg. Source efficiency and high-energy neutronics in accelerator-driven systems. Dissertation, Royal Institute of Technology (2005)

  40. R. Sher. Fission-energy release for 16 fissioning nuclides. Electric Power Research Institute (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuo-Kang Lin or Wei-shi Wan.

Additional information

This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project (No. XDA02010000), and the Frontier Science Key Program of the Chinese Academy of Sciences (No. QYZDY-SSW-JSC016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Lin, ZK., Wan, Ws. et al. Preliminary neutron study of a thorium-based molten salt energy amplifier. NUCL SCI TECH 31, 41 (2020). https://doi.org/10.1007/s41365-020-0750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-0750-8

Keywords

Navigation