Log in

Optimization of the S-band side-coupled cavities for proton acceleration

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields. However, proton sources in China fall short for meeting experimental needs owing to the vast size and expensive traditional proton accelerators. The Institute of Nuclear Science and Technology of Sichuan University proposed to build a 3 GHz side-coupled cavity linac (SCL) for re-accelerating a 26 MeV proton beam extracted from a CS-30 cyclotron to 120 MeV. We carried out investigations into several vital factors of S-band SCL for proton acceleration, such as optimization of SCL cavity geometry, end cell tuning, and bridge coupler design. Results demonstrated that the effective shunt impedance per unit length ranged from 22.5 to 59.8 MΩ/m throughout the acceleration process, and the acceleration gradient changed from 11.5 to 15.7 MV/m when the maximum surface electric field was equivalent to Kilpatrick electric field. We obtained equivalent circuit parameters of the biperiodic structures and applied them to the end cell tuning; results of the theoretical analysis agreed well with the 3D simulation. We designed and optimized a bridge coupler based on the previously obtained biperiodic structure parameters, and the field distribution un-uniformness was < 1.5% for a two-tank module. The radio frequency power distribution system of the linac was obtained based on the preliminary beam dynamics design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.I. Thwaites, J.B. Tuohy, Back to the future: the history and development of the clinical linear accelerator. Phys. Med. Biol. 51(13), 343–362 (2006). https://doi.org/10.1088/0031-9155/51/13/R20

    Article  Google Scholar 

  2. Samy Hanna, RF linear accelerators for medical and industrial applications (Boston/London, Artech House, 2012), pp. 1–10

    Google Scholar 

  3. T. Wangler, RF Linear Accelerators (Wiley, New York, 1998), pp. 2–30

    Book  Google Scholar 

  4. U. Amaldi, S. Braccini, P. Puggioni, High frequency linacs for hadrontherapy. Rev. Accel. Sci. Tech. 02(01), 111–131 (2009). https://doi.org/10.1142/S179362680900020X

    Article  Google Scholar 

  5. U. Amaldi, P. Berra, K. Crandall et al., LIBO—a linac-booster for protontherapy: construction and tests of a prototype. Nucl. Instrum. Methods Phys. Res. Sect. 521(2–3), 512–529 (2004). https://doi.org/10.1016/j.nima.2003.07.062

    Article  Google Scholar 

  6. S. Benedetti, A. Grudiev, A. Latina, High gradient linac for proton therapy. Phys. Rev. Accel. Beams 20(4), 040101 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.040101

    Article  Google Scholar 

  7. G.Y. Jiang, S.Q. Tan, H. Zhao et al., Dynamic power supply controls in Shanghai proton therapy facility. Nucl. Tech. 41(02), 020404 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.020404. (in Chinese)

    Article  Google Scholar 

  8. Y.Q. Cai, Q.X. Yang, K.Z. Ding et al., Use of radiochromic film for diagnosis of accelerator beam position. Nucl. Tech. 42(01), 010202 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.010202

    Article  Google Scholar 

  9. P. Berra, Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy. Wur Wageningen Ur. 2010(5), 401–408 (2009). https://doi.org/10.1016/0164-1212(88)90031-3

    Article  Google Scholar 

  10. U. Amaldi, B. Szeless, M. Vretenar, et al., LIBO: a 3 GHz Proton Linac Booster of 200 MeV for Cancer Treatment. Paper Presented at the XIX International Linear Accelerator Conference, Chicago, USA, 23–28 August 1998

  11. R.W. Hamm, K.R. Crandall, J.M. Potter, Preliminary design of a dedicated proton therapy linac. Paper Presented at the Particle Accelerator Conference, San Francisco, USA 6–9 May 1991

  12. N. Liu, Y.Y. Yang, J.N. ** et al., Preparation of radioactive isotopes by CS-30 cyclotron and their application. J. Isot. 25(03), 189–192 (2012). https://doi.org/10.7538/tws.2012.25.03.0189. (in Chinese)

    Article  Google Scholar 

  13. P.M. Lapostolle, A.L. Septier, Linear Accelerators (Elsevier, New York, 1970), pp. 1148–1156

    Google Scholar 

  14. S. Kulinski, J. Sekutowicz, Five parameter method of tuning of biperiodic π/2 accelerating structures. Paper Presented at the European Particle Accelerator Conference, Stockholm, Sweden, 22–26 June 1998

  15. R. Wegner, F. Gerigk, A comparison of pi/2-mode standing wave structures for Linac4. (Accelerators and Storage Rings, 2007), http://cds.cern.ch/record-restricted/1005812/?ln=hr;2019. Accessed 15 June 2019

  16. LAACG, Superfish Code. (Los Alamos Accelerator Code Group, 2003). https://laacg.lanl.gov/laacg/services/download_sf.phtml;2019. Accessed 18 June 2019

  17. P. Puggioni, Dissertation, Universita degli Studi di `Milano-Bicocca at Milano Italy, 2008

  18. E.A. Knapp, B.C. Knapp, J.M. Potter, Standing wave high energy linear accelerator structures. Rev. Sci. Instrum. 39(7), 979–991 (1968). https://doi.org/10.1063/1.1683583

    Article  Google Scholar 

  19. D.E. Nagle, E.A. Knapp, B.C. Knapp, Coupled resonator model for standing wave accelerator tanks. Rev. Sci. Instrum. 38(11), 1583–1587 (1967). https://doi.org/10.1063/1.1720608

    Article  Google Scholar 

  20. R. Krishnan, S.N. Pethe, R. Roy, O. Shanker, Analysis of side coupled standing wave linear accelerator structure by the perturbation method. IEEE Trans. Nucl. Sci. 40(5), 1333–1336 (1993). https://doi.org/10.1063/1.1683583

    Article  Google Scholar 

  21. O. Shanker, Generalization of linac mode spectrum and fitting procedure. Rev. Sci. Instrum. 63(10), 4443–4445 (1998). https://doi.org/10.1063/1.1143694

    Article  Google Scholar 

  22. L. Dario, F.M. Christian, B. Michele et al., Electromagnetic design of microwave cavities for side-coupled linear accelerators: a hybrid numerical/analytical approach. IEEE Trans. Nucl. Sci. 1(1), 2233–2239 (2018). https://doi.org/10.1109/TNS.2018.2851387

    Article  Google Scholar 

  23. R.W. de Leeuw, J.E. Coppens, W.J.G.M. Kleeven, et al., Design study for the accelerating cavity of the Racetrack Microtron Eindhoven. Paper Presented at the 4th European Particle Accelerator Conference, London, UK, 27 June–1 July 1994

  24. Z. Chen, Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source. Paper Presented at the Eighth European Particle Accelerator Conference, La Villette, Paris, 3–7 June 2002

  25. P. T. Greninger et al, Bridge coupler for APT. Paper Presented at the Proceedings of the 2000 International Linac Conference, Monterey, CA, USA, 21–25 August 2000

  26. L.B. Liu, C.L. Li, P.Y. Yu et al., Development of RF superconducting cavity forward power coupler. Nucl. Tech. 42(2), 020201 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.020201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11375122 and 11875197).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HY., Wan, XM., Chen, W. et al. Optimization of the S-band side-coupled cavities for proton acceleration. NUCL SCI TECH 31, 23 (2020). https://doi.org/10.1007/s41365-020-0735-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-0735-7

Keywords

Navigation