Log in

Assessment of the power deposition on the MEGAPIE spallation target using the GEANT4 toolkit

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This work aims at evaluating the reliability of the GEANT4 (GEometry ANd Tracking 4) Monte Carlo (MC) toolkit in calculating the power deposition on the Megawatt Pilot Experiment (MEGAPIE), the first liquid–metal spallation target worldwide. A new choice of codes to study and optimize this target is provided. The evaluation of the GEANT4 toolkit is carried out in comparison with the MCNPX and FLUKA MC codes. The MEGAPIE is an international project led by the Paul Scherrer Institute in Switzerland. It aims to demonstrate the safe operation of an intense neutron source to power the next generation of nuclear reactors, accelerator-driven systems (ADSs). In this study, we used the GEANT4 MC toolkit to calculate the power deposited by fast protons on the MEGAPIE target. The calculation focuses on several structures and regions. The predictions of our calculations were compared and discussed with that of the MCNPX and FLUKA codes, adopted by the MEGAPIE project. The comparison shows that there is a very good agreement between our results and those of the reference codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Latge, F.Groeschel, P. Agostini et al., Megapie spallation target: design, implementation and preliminary tests of the first prototypical spallation target for future ADS. HAL: in2p3-00290482v1

  2. G.S. Bauer, M. Salvatores, G. Heusener, MEGAPIE a 1 MW pilot experiment for a liquid metal spallation target. J. Nucl. Mater. 296, 17–35 (2001). https://doi.org/10.1016/S0022-3115(01)00561-X

    Article  Google Scholar 

  3. C. Fazio, F. Gröschel, W. Wagner et al., The MEGAPIE-TEST project: supporting research and lessons learned in first-of-a-kind spallation target technology. Nucl. Eng. Des. 238(6), 1471–1495 (2008). https://doi.org/10.1016/j.nucengdes.2007.11.006

    Article  Google Scholar 

  4. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/s0168-9002(03)01368-8

    Article  Google Scholar 

  5. J. Allison, K. Amako, J. Apostolakis et al., GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  6. J. Apostolakis, M. Asai, A.G. Bogdanov et al., Geometry and physics of the GEANT4 toolkit for high and medium energy applications. Radiat. Phys. Chem. 78, 859–873 (2009). https://doi.org/10.1016/j.radphyschem.2009.04.026

    Article  Google Scholar 

  7. L.S. Waters, ed., MCNPX Users’s Manual Version 2.4.0, LA-CP-02-408, (Los Alamos National Laboratory, 2002)

  8. A. Fassò et al., in FLUKA: status and prospective for hadronic applications, eds. by A. Kling, F. Barao, M. Nakagawa et al. Proceedings of the Monte Carlo 2000 Conference (2000) (Springer, 2001) pp. 955–960

  9. A. Fassò, A. Ferrari, P.R. Sala, Electron-photon transport in FLUKA: status, in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, ed. by A. Kling, F. Barao, M. Nakagawa, et al. (Springer, Berlin, 2001), pp. 159–164. https://doi.org/10.1007/978-3-642-18211-2_27

    Chapter  Google Scholar 

  10. L. Zanini et al., Summary Report for MEGAPIE R&D Task Group X9 (PSI Bericht, 05-12, ISSN 1019-06432005)

  11. G. Santin, D. Strul, D. Lazaro et al., GATE: a GEANT4-based simulation platform for PET and SPECT integrating movement and time management. IEEE Trans. Nucl. Sci. 50(5), 1516–1521 (2003). https://doi.org/10.1109/TNS.2003.817974

    Article  Google Scholar 

  12. D. Strulab, G. Santin, D. Lazaro et al., GATE: a PET/SPECT general-purpose simulation platform. Nucl. Phys. B 125, 75–79 (2003). https://doi.org/10.1016/S0920-5632(03)90969-8

    Article  Google Scholar 

  13. Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Neutron production and energy deposition in fissile spallation targets studied with GEANT4 toolkit. Nucl. Instrum. Methods B 289, 79–90 (2012). https://doi.org/10.1016/j.nimb.2012.07.023

    Article  Google Scholar 

  14. Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Modeling spallation reactions in tungsten and uranium targets with the GEANT4 toolkit. EPJ Web Conf. 21, 10006 (2012). https://doi.org/10.1051/epjconf/20122110006

    Article  Google Scholar 

  15. Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Monte Carlo modeling of spallation targets containing uranium and americium. Nucl. Instrum. Methods B 334, 8–17 (2014). https://doi.org/10.1016/j.nimb.2014.04.027

    Article  Google Scholar 

  16. I. Mishustin, Y. Malyshkin, I. Pshenichnov et al., Possible production of neutron-rich heavy nuclei in fissile spallation targets, in Nuclear Physics: Present and Future FIAS International Science Series, ed. by W. Greiner (Springer, Cham, 2015), pp. 151–161. https://doi.org/10.1007/978-3-319-10199-6_15

    Chapter  Google Scholar 

  17. GEANT4 User’s Guide for Application Developers. http://GEANT4.web.cern.ch/GEANT4/UserDocumentation/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.2/html/index.html. Accessed 10 Mar 2019

  18. J. EL Bakkali, T. El Bardouni, Validation of MC GEANT4 code for a 6 MV Varian linac. J. King Saud Univ. Sci. 29(1), 106–113 (2017). https://doi.org/10.1016/j.jksus.2016.03.003

    Article  Google Scholar 

  19. B. Schmidt, J. González-Dominguez, C. Hundt, et al., C++ 11 Multithreading, Parallel Programming, Chap. 4, (2018) pp. 77–133. https://doi.org/10.1016/b978-0-12-849890-3.00004-6

  20. A. Lamrabet, A. Maghnouj, J. Tajmouati, GEANT4 modeling of the international MEGAPIE experiment. Adv. Stud. Theor. Phys. 11(12), 567–575 (2017). https://doi.org/10.12988/astp.2017.7732

    Article  Google Scholar 

  21. https://www.scientificlinux.org/

  22. CLHEP—A Class Library for High Energy Physics. http://proj-clhep.web.cern.ch/proj-clhep/. Accessed 10 Mar 2019

  23. ROOT a Data analysis Framework. https://root.cern.ch/. Accessed 10 Mar 2019

  24. Qt | Cross-platform software developement for embedded & desktop. https://www.qt.io/. Accessed 10 Mar 2019

  25. S.L. Meo, M.A. Cortés-Giraldo, C. Massimi et al., GEANT4 simulations of the n_TOF spallation source and their benchmarking. Eur. Phys. J. A 51, 160 (2015). https://doi.org/10.1140/epja/i2015-15160-6

    Article  Google Scholar 

  26. B. Andersson, G. Gustafson, B. Nilsson-Almqvist et al., A model for low-p T hadronic reactions with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl. Phys. B 281, 289–309 (1987). https://doi.org/10.1016/0550-3213(87)90257-4

    Article  Google Scholar 

  27. H. Pi, An event generator for interactions between hadrons and nuclei—FRITIOF version 7.0. Comput. Phys. Commun. 71, 173–192 (1992). https://doi.org/10.1016/0010-4655(92)90082-a

    Article  Google Scholar 

  28. A. Boudard, J. Cugnon, J.-C. David et al., New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys. Rev. C 87, 014606 (2013). https://doi.org/10.1103/PhysRevC.87.014606

    Article  Google Scholar 

  29. D. Mancusi, A. Boudard, J. Cugnon et al., Extension of the Liège intranuclear-cascade model to reactions induced by light nuclei. Phys. Rev. C 90, 054602 (2014). https://doi.org/10.1103/PhysRevC.90.054602

    Article  Google Scholar 

  30. J.M. Quesada, V. Ivanchenko, A. Ivanchenko et al., Recent developments in pre-equilibrium and de-excitation models in GEANT4. Prog. Nucl. Sci. Technol. 2, 936–941 (2011). https://doi.org/10.15669/pnst.2.936

    Article  Google Scholar 

  31. A. Boudard, J. Cugnon, S. Leray et al., Intranuclear cascade model for a comprehensive description of spallation reaction data. Phys. Rev. C 66, 044615 (2002). https://doi.org/10.1103/PhysRevC.66.044615

    Article  Google Scholar 

  32. P. Kaitaniemi, A. Boudard, S. Leray et al., INCL intra-nuclear cascade and ABLA de-excitation models in GEANT4. Prog. Nucl. Sci. Technol. 2, 788–793 (2011). https://doi.org/10.15669/pnst.2.788

    Article  Google Scholar 

  33. D. Filges, F. Goldenbaum, Handbook of Spallation Research. Theory, Experiments and Applications (Wiley, New York, 2009). https://doi.org/10.1002/9783527628865

    Book  Google Scholar 

  34. J.J. Gaimard, K.H. Schmidt, A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction. Nucl. Phys. A 531(3–4), 709–745 (1991). https://doi.org/10.1016/0375-9474(91)90748-U

    Article  Google Scholar 

  35. A.R. Junghans, M. de Jong, H.-G. Clerc et al., Projectile-fragment yields as a probe for the collective enhancement in the nuclear level density. Nucl. Phys. A 629(3–4), 635–655 (1998). https://doi.org/10.1016/S0375-9474(98)00658-7

    Article  Google Scholar 

  36. J. Benlliure, A. Grewe, M. de Jong et al., Calculated nuclide production yields in relativistic collisions of fissile nuclei. Nucl. Phys. A 628(3), 458–478 (1998). https://doi.org/10.1016/S0375-9474(97)00607-6

    Article  Google Scholar 

  37. http://www-nds.iaea.org/spallations. Accessed 10 Mar 2019

  38. J.C. David, Spallation reactions: a successful interplay between modeling and applications. Eur. Phys. J. A 51, 68 (2015). https://doi.org/10.1140/epja/i2015-15068-1

    Article  Google Scholar 

  39. A.R. García, E. Mendoza, D. Cano-Ott, Validation of the Thermal Neutron Physics in GEANT4 (Department of Energy, Madrid, 2013)

    Google Scholar 

  40. https://www-nds.iaea.org/geant4/. Accessed 10 Mar 2019

  41. A. Cadiou, A. Guertin, T. Kirchner, et al, Final Summary Report on Target Design, (2004) pp. 13–47. HAL:in2p3-00025250v1

  42. T. Kirchner et al., MEGAPIE target design and dimensioning. proceedings of the 4 th MEGAPIE Technical Review Meeting, March 18–19, 2003, Paris. Report FZKA 6876. HAL:hal-01082506v1

  43. L. Zanini, H.U. Aebersold, K. Berg, et al., Neutronic and Nuclear Post-Test Analysis of MEGAPIE, Part I, Chap 2, PSI Bericht Nr. 08–04, (2008), ISSN: 1019-0643

  44. Y. Foucher, Nuclear Assessment of the MEGAPIE Target, in Proceedings of 4th MEGAPIE Technical Review Meet, FZK Science Report, FZKA 6876 (2003) pp. 149–161

Download references

Acknowledgements

The calculations for this simulation were carried out using the national grid of calculation “MaGrid” managed by the National Center of Scientific and Technological Research (CNRST) in Morocco. The authors are grateful to the staff of “MaGrid,” in particular Ms. Bouchra RAHIM, a computer engineer, for her availability and assistance with computer work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdesslam Lamrabet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamrabet, A., Maghnouj, A., Tajmouati, J. et al. Assessment of the power deposition on the MEGAPIE spallation target using the GEANT4 toolkit. NUCL SCI TECH 30, 54 (2019). https://doi.org/10.1007/s41365-019-0590-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0590-6

Keywords

Navigation