Log in

Full Dynamic Modeling of the General Stewart Platform Manipulator via Kane’s Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Full dynamic modeling of the general Stewart platform manipulator is a complex task due to its closed-loop structure. In this paper, a complete model of inverse dynamics of the most general Stewart platform manipulator, without any simplification on dynamic properties of its components, is presented. It is noted that the equations obtained considering the comprehensive and detailed description of the Stewart system bear a computational burden considerably less than that from the more traditional methods of dynamic modeling, and this was indeed verified in the results obtained through simulations performed using the algorithm presented in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. 6- Spherical, Prismatic, Spherical.

  2. 6- Universal, Prismatic, Spherical.

References

  • Abdellatif H, Heimann B (2009) Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mech Mach Theory 44(1):192–207

    Article  MATH  Google Scholar 

  • Amirouche F (2007) Fundamentals of multibody dynamics: theory and applications. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Dasgupta B, Mruthyunjaya TS (1998) A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech Mach Theory 33(8):1135–1152

    Article  MathSciNet  MATH  Google Scholar 

  • Di Gregorio R, Parenti-Castelli V (2004) Dynamics of a class of parallel wrists. J Mech Des 126(3):436–441

    Article  Google Scholar 

  • Guo HB, Li HR (2006) Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator. Proc Inst Mech Eng Part C: J Mech Eng Sci 220(1):61–72

    Article  Google Scholar 

  • Khalil W, Ibrahim O (2007) General solution for the dynamic modeling of parallel robots. J Intell Rob Syst 49(1):19–37

    Article  Google Scholar 

  • Lopes A (2008) A computational efficient approach to the dynamic modeling of 6-DOF parallel manipulators. Proceedings of the ENOC’08. https://www.researchgate.net/publication/255587775_A_COMPUTATIONAL_EFFICIENT_APPROACH_TO_THE_DYNAMIC_MODELING_OF_6DOF_PARALLEL_MANIPULATO

  • Makkar C, Dixon WE, Sawyer WG, Hu G (2005) A new continuously differentiable friction model for control systems design. In: Proceedings, 2005 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 600–605

  • Nguyen CC, Pooran FJ (1989) Dynamic analysis of a 6 DOF CKCM robot end-effector for dual-arm telerobot systems. Robot Auton Syst 5(4):377–394

    Article  Google Scholar 

  • Staicu S (2011) Dynamics of the 6–6 Stewart parallel manipulator. Robot Comput Integr Manuf 27(1):212–220

    Article  Google Scholar 

  • Tsai LW (2000) Solving the inverse dynamics of a Stewart–Gough manipulator by the principle of virtual work. J Mech Des 122(1):3–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Asadi.

Appendix

Appendix

System parameters:

All parameters are in SI units.

Universal joint locations:

$$\left[ {\begin{array}{*{20}c} {\varvec{b}_{1} } & \cdots & {\varvec{b}_{6} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {0.483} & {0.354} & { - 0.354} \\ {0.129} & {0.354} & {0.354} \\ 0 & 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} { - 0.483} & { - 0.129} & {0.129} \\ {0.129} & { - 0.483} & { - 0.482} \\ 0 & 0 & 0 \\ \end{array} } \\ \end{array} } \right]$$

Spherical joint locations:

$$\left[ {\begin{array}{*{20}c} {\varvec{p}_{1}^{\varvec{'}} } & \cdots & {\varvec{p}_{6}^{\varvec{'}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {0.068} & { - 0.068} & { - 0.197} \\ {0.188} & {0.188} & { - 0.035} \\ { - 0.05} & { - 0.05} & { - 0.05} \\ \end{array} } & {\begin{array}{*{20}c} { - 0.129} & {0.129} & {0.197} \\ { - 0.153} & { - 0.153} & { - 0.035} \\ { - 0.05} & { - 0.05} & { - 0.05} \\ \end{array} } \\ \end{array} } \right]$$

Mass of each part:

$$\begin{aligned} &m_{p} = 30 \hfill \\ &m_{e} = 2 \hfill \\ &m_{h} = 1.2 \hfill \\ \end{aligned}$$

Legs’ center of masses:

$$\begin{aligned} \varvec{e} & = \left[ {\begin{array}{*{20}c} {0.05} & {0.03} & {0.25} \\ \end{array} } \right]^{\text{T}} \\ \varvec{h} & = \left[ {\begin{array}{*{20}c} {0.03} & {0.03} & { - 0.2} \\ \end{array} } \right]^{\text{T}} \\ \end{aligned}$$

Moments of inertia of each part:

$$\begin{aligned} &{}_{{}}^{\varvec{P}} \varvec{I}_{\varvec{p}} = \left[ {\begin{array}{*{20}c} {2.5} & 0 & 0 \\ 0 & {2.5} & 0 \\ 0 & 0 & 5 \\ \end{array} } \right] \hfill \\& {}_{{}}^{\varvec{i}} \varvec{I}_{{1\varvec{i}}} = \left[ {\begin{array}{*{20}c} {0.11} & {0.15} & {0.4} \\ {0.15} & {0.2} & {0.3} \\ {0.4} & {0.3} & {0.5} \\ \end{array} } \right] \hfill \\ &{}_{{}}^{\varvec{i}} \varvec{I}_{{2\varvec{i}}} = \left[ {\begin{array}{*{20}c} {0.17} & {0.07} & {0.15} \\ {0.07} & {0.15} & {0.13} \\ {0.15} & {0.13} & {0.25} \\ \end{array} } \right] \hfill \\ \end{aligned}$$

Friction coefficients of the joints:

Prismatic joints (actuators):

$$\left[\begin{array}{ccc} c_{1} & \cdots & c_{6} \\ \end{array}\right] =\left[ \begin{array}{cccccc} 20& 120 & 95& 10 & 1150& 0.65 \\ \end{array}\right]$$

Universal joints:

$$\left[ {\begin{array}{*{20}c} {c_{1} } & \cdots & {c_{6} } \\ \end{array} } \right] = \left[{\begin{array}{*{20}c} 1 & {150} & {80} &2 & {1000} & {0.05}\\ \end{array} }\right]$$

Spherical joints:

$$\left[ {\begin{array}{*{20}c} {c_{1} } & \cdots & {c_{6} } \\ \end{array} } \right] = \left[{\begin{array}{*{20}c} 5 & {120} & {80} &3 & {860} & {0.15}\\ \end{array} } \right]$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, F., Sadati, S.H. Full Dynamic Modeling of the General Stewart Platform Manipulator via Kane’s Method. Iran J Sci Technol Trans Mech Eng 42, 161–168 (2018). https://doi.org/10.1007/s40997-017-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0091-3

Keywords

Navigation