Log in

Confidence Intervals for Common Signal-to-Noise Ratio of Several Log-Normal Distributions

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Log-normal distribution is used widely in application fields such as economics and finance. This paper considers confidence interval estimates for common signal-to-noise ratio of log-normal distributions based on generalized confidence interval (GCI), adjusted method of variance estimates recovery, and computational approaches. A simulation study is conducted to compare the performance of these confidence intervals. A Monte Carlo simulation is applied to report coverage probability and average length of the confidence intervals. Based on the simulation study, for \(k=\) 3, the GCI can be used. For \(k=\) 6, the results of GCI approach perform similarly to the results of computational approach. For \(k=\) 10, the computational approach can be considered as an alternative to estimate the confidence interval. A numerical example based on real data is presented to illustrate the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albatineh AN, Boubakari I, Kibria BMG (2017) New confidence interval estimator of the signal-to-noise ratio based on asymptotic sampling distribution. Commun Stat Theory Methods 46:574–590

    Article  MathSciNet  Google Scholar 

  • Albatineh AN, Kibria BMG, Zogheib B (2014) Asymptotic sampling distribution of inverse coefficient of variation and its applications: revisited. Int J Adv Stat Probab 2:15–20

    Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference. Thomson Learnig, Duxbury

    MATH  Google Scholar 

  • Cho HK, Bowman KP, North GR (2004) A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the tropical rainfall measuring mission. J Appl Meteorol 43:1586–1597

    Article  Google Scholar 

  • Donner A, Zou GY (2012) Closed-form confidence intervals for function of the normal standard deviation. Stat Methods Med Res 21:347–359

    Article  MathSciNet  Google Scholar 

  • Doornbos R, Dijkstra JB (1983) A multi sample test for the equality of coefficients of variation in normal populations. Commun Stat Simul Comput 12:147–158

    Article  Google Scholar 

  • Fung WK, Tsang TS (1998) A simulation study comparing tests for the equality of coefficients of variation. Stat Med 17:2003–2014

    Article  Google Scholar 

  • Graybill FA, Deal RB (1959) Combining unbiased estimators. Biometrics 15:543–550

    Article  MathSciNet  Google Scholar 

  • George F, Kibria BMG (2011) Confidence intervals for signal to noise ratio of a Poisson distribution. Am J Biostat 2:44–55

    Google Scholar 

  • George F, Kibria BMG (2012) Confidence intervals for estimating the population signal-to-noise ratio: a simulation study. J Appl Stat 39:1225–1240

    Article  MathSciNet  Google Scholar 

  • Gupta RC (2006) Statistical inference for the common mean of two log-normal distributions and some applications in reliability. Comput Stat Data Anal 50:3141–3164

    Article  MathSciNet  Google Scholar 

  • Gupta RC, Ma S (1996) Testing the equality of the coefficients of variation in k normal populations. Commun Stat Theory Methods 25:115–132

    Article  MathSciNet  Google Scholar 

  • Hannig J, Lidong E, Abdel-Karim A, Iyer H (2006) Simultaneous fiducial generalized confidence intervals for ratios of means of lognormal distributions. Austrian J Stat 35:261–269

    Google Scholar 

  • Hasan MS, Krishnamoorthy K (2017) Improved confidence intervals for the ratio of coefficients of variation of two lognormal distributions. J Stat Theory Appl 16:345–353

    MathSciNet  Google Scholar 

  • Holgersson HET, Karlsson PS, Mansoor R (2012) Estimating mean-standard deviation ratios of financial data. J Appl Stat 39:657–671

    Article  MathSciNet  Google Scholar 

  • Krishnamoorthy K, Lu Y (2003) Inference on the common means of several normal populations based on the generalized variable method. Biometrics 59:237–247

    Article  MathSciNet  Google Scholar 

  • Krishnamoorthy K, Oral E (2017) Standardized likelihood ratio test for comparing several log-normal means and confidence interval for the common mean. Stat Methods Med Res 26:2919–2937

    Article  MathSciNet  Google Scholar 

  • Mahmoudvand R, Hassani H (2009) Two new confidence intervals for the coefficient of variation in a normal distribution. J Appl Stat 36:429–442

    Article  MathSciNet  Google Scholar 

  • Miller EC, Karson MJ (1977) Testing equality of two coefficients of variation. Proc Bus Econ Sect I:278–283

    Google Scholar 

  • Motchenbacher CD, Connelly JA (1993) Low-noise electronic system design. Wiley, New York

    Google Scholar 

  • Nam JM, Kwon D (2017) Inference on the ratio of two coefficients of variation of two lognormal distributions. Commun Stat Theory Methods 46:8575–8587

    Article  MathSciNet  Google Scholar 

  • Niwitpong S (2013) Confidence intervals for coefficient of variation of lognormal distribution with restricted parameter space. Appl Math Sci 7:3805–3810

    MathSciNet  Google Scholar 

  • Niwitpong S (2018) Confidence intervals for functions of signal-to-noise ratios of normal distributions. Stud Comput Intell 760:196–212

    Google Scholar 

  • Ng CK (2014) Inference on the common coefficient of variation when populations are lognormal: a simulation-based approach. J Stat Adv Theory Appl 11:117–134

    Google Scholar 

  • Pal N, Lim WK, Ling CH (2007) A computational approach to statistical inferences. J Appl Probab Stat 2:13–35

    MathSciNet  MATH  Google Scholar 

  • Ritzema HP (1994) Frequency and regression analysis. International Institute for Land Reclamation and Improvement, Wageningen

    Google Scholar 

  • Schaarschmidt F (2013) Simultaneous confidence intervals for multiple comparisons among expected values of log-normal variables. Comput Stat Data Anal 58:265–75

    Article  MathSciNet  Google Scholar 

  • Sharma KK, Krishna H (1994) Asymptotic sampling distribution of inverse coefficient of variation and its applications. IEEE Trans Reliab 43:630–633

    Article  Google Scholar 

  • Soliman AA, Abd Ellah AH, Abou-Elheggag NA, Modhesh AA (2012) Estimation of the coefficient of variation for non-normal model using progressive first-failure-censoring data. J Appl Stat 39:2741–2758

    Article  MathSciNet  Google Scholar 

  • Thangjai W, Niwitpong S (2019) Confidence intervals for the signal-to-noise ratio and difference of signal-to-noise ratios of log-normal distributions. Stats 2:164–173

    Article  Google Scholar 

  • Thangjai W, Niwitpong S, Niwitpong S (2016) Simultaneous fiducial generalized confidence intervals for all differences of coefficients of variation of log-normal distributions. Lect Notes Artif Intell 9978:552–561

    MATH  Google Scholar 

  • Thangjai W, Niwitpong S, Niwitpong S (2018) Adjusted generalized confidence intervals for the common coefficient of variation of several normal populations. Commun Stat Simul Comp. (in press)

  • Thangjai W, Niwitpong S, Niwitpong S (2019) Simultaneous confidence intervals for all differences of coefficients of variation of log-normal distributions. Hacet J Math Stat. (in press)

  • Tian L (2005) Inferences on the common coefficient of variation. Stat Med 24:2213–2220

    Article  MathSciNet  Google Scholar 

  • Tian L, Wu J (2007) Inferences on the common mean of several log-normal populations: the generalized variable approach. Biom J 49:944–951

    Article  MathSciNet  Google Scholar 

  • Tsim YL, Yip SP, Tsang KS, Li KF, Wong HF (1991) Haematogoy and serology. In: Annual report, Honk Kong Medical Technology Association Quality Assurance Programme, pp 25–40

  • Vangel MG (1996) Confidence intervals for a normal coefficient of variation. J Am Stat Assoc 50:21–26

    MathSciNet  Google Scholar 

  • Weerahandi S (1993) Generalized confidence intervals. J Am Stat Assoc 88:899–905

    Article  MathSciNet  Google Scholar 

  • Wong ACM, Wu J (2002) Small sample asymptotic inference for the coefficient of variation: normal and nonnormal models. J Stat Plan Inference 104:73–82

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by King Mongkut’s University of Technology North Bangkok. Grant No. KMUTNB-61-GOV-D-30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa-Aat Niwitpong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

R code for outputs in Tables 1, 2, and 3

CI.SNRLN \(=\) function(M,m,k,n(k),mean,sqrt.var(k)){

ni \(=\) rep(0,k); s \(=\) rep(0,k); xbar \(=\) rep(0,k); mu.hat.RML \(=\) rep(0,k)

sigma.hat.RML \(=\) rep(0,k); Rtheta.GCI \(=\) rep(0,m)

theta.CA \(=\) rep(0,m); CP.GCI \(=\) rep(0,M); CP.AM \(=\) rep(0,M)

CP.CA \(=\) rep(0,M); Length.GCI \(=\) rep(0,M); Length.AM \(=\) rep(0,M)

Length.CA \(=\) rep(0,M); alpha \(=\) 0.05; z.alpha \(=\) qnorm(1-(alpha/2))

sqrt.var \(=\) c(sqrt.var(k)); theta(k) \(=\) 1/sqrt(exp(sqrt.var(k)\(^\wedge 2\))-1)

var.theta(k) \(=\) ((sqrt.var(k)\(^\wedge\)4)\(*\)(exp(2\(*\)(sqrt.var(k)\(^\wedge 2\)))))/(2\(*\)(n(k)-1)

\(*\)(((exp(sqrt.var(k)\(^\wedge 2\)))-1)\(^\wedge 3\)))

theta.p \(=\) c(theta(k)); var.theta.p \(=\) c(var.theta(k))

theta \(=\) (sum(theta.p/var.theta.p))/(sum(1/var.theta.p))

for(i in 1:M){

x(k) \(=\) rnorm(n(k),mean,sqrt.var(k)); xbar.(k) \(=\) mean(x(k))

s.(k) \(=\) sd(x(k)); ni \(=\) c(n(k)); xbar \(=\) c(xbar.(k)); s \(=\) c(s.(k))

thetahat \(=\) 1/sqrt((exp(\(\hbox {s}^\wedge 2\)))-1)

var.thetahat \(=\) ((\(\hbox {s}^\wedge 4\))\(*\)(exp(\(2*\)(\(\hbox {s}^\wedge 2\)))))/(\(2*\)(ni-1)\(*\)(((exp(\(\hbox {s}^\wedge 2\)))-1)\(^\wedge 3\)))

frac1 \(=\) sum(thetahat/var.thetahat); frac2 \(=\) sum(1/var.thetahat)

thetahat.large \(=\) frac1/frac2

for(j in 1:m){

V \(=\) rchisq(k,ni-1); Rsig.sqrt \(=\) ((ni-1)\(*\)(\(\hbox {s}^\wedge 2\)))/V

Rvar \(=\) ((\(\hbox {Rsig.sqrt}^\wedge 2\))\(*\)(exp(\(2*\)(Rsig.sqrt))))/(\(2*\)(ni-1)\(*\)(((exp(Rsig.sqrt))-1)\(^\wedge 3\))); Rtheta \(=\) 1/sqrt((exp(Rsig.sqrt))-1)

Rtheta.GCI[j] \(=\) sum(Rtheta/Rvar)/sum(1/Rvar)}

L.CI1 \(=\) quantile(Rtheta.GCI,0.025,type=8)

U.CI1 \(=\) quantile(Rtheta.GCI,0.975,type=8)

CP.GCI[i] \(=\) ifelse(L.CI1<theta&&theta<U.CI1,1,0)

Length.GCI[i] \(=\) U.CI1-L.CI1

t.x \(=\) qt((1-alpha/2),(ni-1)); l1 \(=\) (1/sqrt((exp(\(\hbox {s}^\wedge 2\)))-1))-(t.x\(*\)sqrt(var.thetahat))

u1 \(=\) (1/sqrt((exp(\(\hbox {s}^\wedge 2\)))-1))+(t.x\(*\)sqrt(var.thetahat)); z \(=\) qnorm(alpha/2)

var.l \(=\) ((thetahat-l1)\(^\wedge 2\))/(\(\hbox {z}^\wedge 2\)); var.u \(=\) ((u1-thetahat)\(^\wedge 2\))/(\(\hbox {z}^\wedge 2\))

var.t \(=\) (var.l+var.u)/2; thetahat.w \(=\) (sum(thetahat/(var.t)))/(sum(1/(var.t)))

L.CI2 \(=\) thetahat.w-(z.alpha\(*\)sqrt(1/(sum(1/var.l))))

U.CI2 \(=\) thetahat.w+(z.alpha\(*\)sqrt(1/(sum(1/var.u))))

CP.AM[i] \(=\) ifelse(L.CI2<theta&&theta<U.CI2,1,0)

Length.AM[i] \(=\) U.CI2-L.CI2

mu.hat.RML \(=\) xbar; mu.hat.RML(k) \(=\) mu.hat.RML[[k]]

sigma.hat.RML \(=\) s; sigma.hat.RML(k) \(=\) sigma.hat.RML[[k]]

for(j in 1:m){

x.RML(k) \(=\) rnorm(n(k),mu.hat.RML(k),sigma.hat.RML(k))

xbar.RML.(k) \(=\) mean(x.RML(k)); s.RML.(k) \(=\) sd(x.RML(k))

xbar.RML \(=\) c(xbar.RML.(k)); s.RML \(=\) c(s.RML.(k))

thetahat.RML \(=\) 1/sqrt((exp(s.\(\hbox {RML}^\wedge\)2))-1)

var.RML \(=\) ((\(\hbox {s.RML}^\wedge 4\))\(*\)(exp(\(2*\)(\(\hbox {s.RML}^\wedge 2\)))))/(\(2*\)(ni-1)\(*\)(((exp(\(\hbox {s.RML}^\wedge 2\)))-1)\(^\wedge 3\)))

frac1.RML \(=\) sum(thetahat.RML/var.RML); frac2.RML \(=\) sum(1/var.RML)

theta.CA[j] \(=\) frac1.RML/frac2.RML }

L.CI3 \(=\) quantile(theta.CA,0.025,type=8)

U.CI3 \(=\) quantile(theta.CA,0.975,type=8)

CP.CA[i] \(=\) ifelse(L.CI3<theta&&theta<U.CI3,1,0)

Length.CA[i] \(=\) U.CI3-L.CI3}

cat(“CP|GCI\(=\)”, mean(CP.GCI),“Length|GCI\(=\)”, mean(Length.GCI),“\(\backslash\) n”)

cat(“CP|AM\(=\)”, mean(CP.AM),“Length|AM\(=\)”, mean(Length.AM),“\(\backslash\) n”)

cat(“CP|CA\(=\)”, mean(CP.CA),“Length|CA\(=\)”, mean(Length.CA),“\(\backslash\) n”)}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangjai, W., Niwitpong, SA. Confidence Intervals for Common Signal-to-Noise Ratio of Several Log-Normal Distributions. Iran J Sci Technol Trans Sci 44, 99–107 (2020). https://doi.org/10.1007/s40995-019-00793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-019-00793-3

Keywords

Navigation