Log in

Biogeochemical Cycle, Occurrence and Biological Treatments of Polycyclic Aromatic Hydrocarbons (PAHs)

  • Review Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons are responsible for contaminating environmental compartments around the world, imposing risk associated with human health and ecosystem pollution. Emissions from anthropogenic activities predominate; nevertheless, open burning, volcanic activities, and natural losses of petroleum deposits are prominent natural sources. Different physical and chemical treatment technologies have been developed and tested for the removal of PAHs, but the use of biological entities was found most favourable for adaptation at industrial scale. This review can help to understand the mobility of PAHs in the environment. Focus of this review is on identifying processes through which PAHs are added to environment, their biogeochemical cycles, biodegradation, environmental and substrate-specific factors affecting biodegradation. Further studies related to different bioprocesses linked with remediation and removal methodologies along with factors affecting the treatment have also been brought into consideration. This review brings together inter-disciplinary aspects and understanding for PAHs, to which no previous review has focused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aislabie J, Foght DJ, Saul JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10:171–179

    Article  Google Scholar 

  • Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K (2011) Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 22:2028–2035

    Article  Google Scholar 

  • Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  Google Scholar 

  • Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG, Sapojnikova NA, Tsibakhashvili NY, Tabatadze LV, Lejava LV, Asanishvili LL, Holman HY (2004) Effect of chromium (VI) action on Arthrobacter oxydans. Curr Microbiol 49:321–326

    Article  Google Scholar 

  • Atagana HI (2004) Bioremediation of creosote-contaminated soil in South Africa by landfarming. J Appl Microbiol 96:510–520

    Article  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biot 52:149–156

    Article  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  Google Scholar 

  • Bento FM, Camargo FA, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  Google Scholar 

  • Berdicevsky I, Duek L, Merzbach D, Yannai S (1993) Susceptibility of different yeast species to environmental toxic metals. Environ Pollut 80:41–44

    Article  Google Scholar 

  • Betancur-Galvis L, Alvarez-Bernal D, Ramos-Valdivia A, Dendooven L (2006) Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline–alkaline soils of the former Lake Texcoco. Chemosphere 62:1749–1760

    Article  Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems: petroleum microbiology. Macmillan Publishing Coopration, New York

    Google Scholar 

  • Briggs WR (2014) Phototropism: some history, some puzzles, and a look ahead. Plant Physiol 164:13–23

    Article  Google Scholar 

  • Brion D, Pelletier É (2005) Modelling PAHs adsorption and sequestration in freshwater and marine sediments. Chemosphere 61:867–876

    Article  Google Scholar 

  • Brioukhanov AL, Netrusov AI, Eggen RI (2006) The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology 152:1671–1677

    Article  Google Scholar 

  • Brown DG, Knightes CD, Peters CA (1999) Risk assessment for polycyclic aromatic hydrocarbon NAPLs using component fractions. Environ Sci Technol 33:4357–4363

    Article  Google Scholar 

  • Cajthaml T, Möder M, Kačer P, Šašek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222

    Article  Google Scholar 

  • Carmichael LM, Christman RF, Pfaender FK (1996) Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils. Environ Sci Technol 31:126–132

    Article  Google Scholar 

  • Cerniglia C, Perry J (1973) Crude oil degradation by microorganisms isolated from the marine environment. Z Allg Mikrobiol 13:299–306

    Article  Google Scholar 

  • Colombo JC, Cabello M, Arambarri AM (1996) Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi. Environ Pollut 94:355–362

    Article  Google Scholar 

  • Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. CRC Crit Rev Microbiol 5:423–445

    Article  Google Scholar 

  • Conde E, Cardenas M, Ponce-Mendoza A, Luna-Guido M, Cruz-Mondragón C, Dendooven L (2005) The impacts of inorganic nitrogen application on mineralization of 14 C-labelled maize and glucose, and on priming effect in saline alkaline soil. Soil Biol Biochem 37:681–691

    Article  Google Scholar 

  • Cookson J (1995) Bioremediation engineering: design and application. McGraw-Hill Inc, New York

    Google Scholar 

  • Cornelissen G, Van Noort PC, Parsons JR, Govers HA (1997) Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. Environ Sci Technol 31:454–460

    Article  Google Scholar 

  • Cornelissen G, Rigterink H, Ferdinandy MM, Van Noort PC (1998) Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ Sci Technol 32:966–970

    Article  Google Scholar 

  • Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–15

    Google Scholar 

  • Delille D, Basseres A, Dessommes A, Rosiers C (1998) Influence of daylight on potential biodegradation of diesel and crude oil in Antarctic seawater. Mar Environ Res 45:249–258

    Article  Google Scholar 

  • Dibble J, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microb 37:729–739

    Google Scholar 

  • Dong J, **a X, Wang M, **e H, Wen J, Bao Y (2016) Effect of recurrent sediment resuspension-deposition events on bioavailability of polycyclic aromatic hydrocarbons in aquatic environments. J Hydrol 540:934–946

    Article  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  Google Scholar 

  • Dutta TK, Harayama S (2000) Fate of crude oil by the combination of photooxidation and biodegradation. Environ Sci Technol 34:1500–1505

    Article  Google Scholar 

  • Edwards NT (1983) Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment-a review. J Environ Qual 12:427–441

    Article  Google Scholar 

  • Fedorak P, Semple K, Westlake D (1984) Oil-degrading capabilities of yeasts and fungi isolated from coastal marine environments. Can J Microbiol 30:565–571

    Article  Google Scholar 

  • Freeman DJ, Cattell FC (1990) Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 24:1581–1585

    Article  Google Scholar 

  • Frutos FJG, Escolano O, García S, Babín M, Fernández MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813

    Article  Google Scholar 

  • Ghosh U, Zimmerman JR, Luthy RG (2003) PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environ Sci Technol 37:2209–2217

    Article  Google Scholar 

  • Gomelsky M, Hoff WD (2011) Light helps bacteria make important lifestyle decisions. Trends Microbiol 19:441–448

    Article  Google Scholar 

  • Gorman AA (1992) The bimolecular reactivity of singlet molecular oxygen. Adv Photochem 17:217–274

    Google Scholar 

  • Hadibarata T, Kristanti RA (2012) Fate and cometabolic degradation of benzo [a] pyrene by white-rot fungus Armillaria sp F022. Bioresour Technol 107:314–318

    Article  Google Scholar 

  • Halsall CJ, Sweetman A, Barrie L, Jones KC (2001) Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic. Atmos Environ 35:255–267

    Article  Google Scholar 

  • Hankin L, Kolattukudy P (1968) Metabolism of a plant wax paraffin (n-nonacosane) by a soil bacterium (Micrococcus cerificans). J Gen Microbiol 51:457–463

    Article  Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotech 8:268–273

    Article  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microb Biotech 1:63–70

    Google Scholar 

  • Haritash A, Kaushik C (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  Google Scholar 

  • Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2002) Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests 1 PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36:4795–4803

    Article  Google Scholar 

  • Holland HL, Brown FM, Munoz B, Ninniss RW (1988) Side chain hydroxylation of aromatic hydrocarbons by fungi Part 2 Isotope effects and mechanism. J Chem Soc Perk 2:1557–1563

    Article  Google Scholar 

  • Huang D, Guo S, Li T, Wu B (2013) Coupling interactions between electrokinetics and bioremediation for pyrene removal from soil under polarity reversal conditions. Clean-Soil Air Water 41:383–389

    Article  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2003) Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environ Toxicol Chem 22:2853–2860

    Article  Google Scholar 

  • Husaini A, Roslan H, Hii K, Ang C (2008) Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J Microb Biot 24:2789–2797

    Article  Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs, vol 1–42. International Agency for Research on Cancer, Lyon

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  Google Scholar 

  • Isobe K, Inoue N, Takamatsu Y, Kamada K, Wakao N (2006) Production of catalase by fungi growing at low pH and high temperature. J Biosci Bioeng 101:73–76

    Article  Google Scholar 

  • Iturbe R, Flores C, Torres LG (2007) Operation of a 27–m3 biopile for the treatment of petroleum-contaminated soil. Remed J 17:97–108

    Article  Google Scholar 

  • Jarvis IW, Bergvall C, Bottai M, Westerholm R, Stenius U, Dreij K (2013) Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter. Toxicol Appl Pharm 266:408–418

    Article  Google Scholar 

  • Junaid M, Hashmi MZ, Malik RN, Pei D-S (2016) Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: a review. Environ Sci Pollut R 23:20151–20167

    Article  Google Scholar 

  • Kanaly R, Bartha R, Fogel S, Findlay M (1997) Biodegradation of [(sup14)C]benzo [a] pyrene added in crude oil to uncontaminated soil. Appl Environ Microb 63:4511–4515

    Google Scholar 

  • Ke L, Bao W, Chen L, Wong YS, Tam NFY (2009) Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries. Chemosphere 76:1102–1108

    Article  Google Scholar 

  • Khan AHA, Anees M, Arshad M, Muhammad YS, Iqbal M, Yousaf S (2016a) Effects of illuminance and nutrients on bacterial photo-physiology of hydrocarbon degradation. Sci Total Environ 557:705–711

    Article  Google Scholar 

  • Khan AHA, Tanveer S, Anees M, Muhammad YS, Iqbal M, Yousaf S (2016b) Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production. J Environ Manag 176:54–60

    Article  Google Scholar 

  • Koma D, Hasumi F, Yamamoto E, Ohta T, Chung S-Y, Kubo M (2001) Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. J Biosci Bioeng 91:94–96

    Article  Google Scholar 

  • Kumari B, Singh SP, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47:2463–2471

    Article  Google Scholar 

  • Kuo C-Y, Chien P-S, Kuo W-C, Wei C-T, Rau J-Y (2013) Comparison of polycyclic aromatic hydrocarbon emissions on gasoline and diesel dominated routes. Environ Monit Assess 185:5749–5761

    Article  Google Scholar 

  • Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Microbiol 81:355–362

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    Google Scholar 

  • Lee MD, Swindoll CM (1993) Bioventing for in situ remediation. Hydrol Sci J 38:273–282

    Article  Google Scholar 

  • Lichtenthaler RG, Haag WR, Mill T (1989) Photooxidation of probe compounds sensitized by crude oils in toulene and as an oil film on water. Environ Sci Technol 23:39–45

    Article  Google Scholar 

  • Liebeg EW, Cutright TJ (1999) The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int Biodeterior Biodegrad 44:55–64

    Article  Google Scholar 

  • Lin J, Mao-sheng Z, Tiaxiang X, Juejun Y, Yanling F, **hua J (2012) Effectiveness of industrialized-scale biopile applied in remediating PAHs contaminated soil. Chin J Environ Eng 5:51–58

    Google Scholar 

  • Lohmann R, MacFarlane J, Gschwend P (2005) Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ Sci Technol 39:141–148

    Article  Google Scholar 

  • Lopez L (1990) Photoinduced electron transfer oxygenations: photoinduced electron transfer I. Springer, New York

    Book  Google Scholar 

  • Lopez-Vizcaino R, Saez C, Canizares P, Rodrigo M (2012) Electrocoagulation of the effluents from surfactant-aided soil-remediation processes. Sep Purif Technol 98:88–93

    Article  Google Scholar 

  • Losi A, Gärtner W (2008) Bacterial bilin-and flavin-binding photoreceptors. Photochem Photobiol Sci 7:1168–1178

    Article  Google Scholar 

  • Losi A, Polverini E, Quest B, Gärtner W (2002) First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys J 82:2627–2634

    Article  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B 102:202–209

    Article  Google Scholar 

  • Luna-Guido M, Vega-Estrada J, Ponce-Mendoza A, Hernandez-Hernandez H, Montes-Horcasitas M-C, Vaca-Mier M, Dendooven L (2003) Mineralization of 14C-labelled maize in alkaline saline soils. Plant Soil 250:29–38

    Article  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  Google Scholar 

  • MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805

    Article  Google Scholar 

  • Maila MP, Cloete TE (2004) Bioremediation of petroleum hydrocarbons through landfarming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Bio/Technol 3:349–360

    Article  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    Article  Google Scholar 

  • Marquès M, Mari M, Audí-Miró C, Sierra J, Soler A, Nadal M, Domingo JL (2016) Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario. Chemosphere 148:495–503

    Article  Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  Google Scholar 

  • Meador J, Stein J, Reichert W, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms: reviews of environmental contamination and toxicology. Springer, New York

    Book  Google Scholar 

  • Meng L, Qiao M, Arp HPH (2011) Phytoremediation efficiency of a PAH-contaminated industrial soil using ryegrass, white clover, and celery as mono-and mixed cultures. J Soils Sediments 11:482–490

    Article  Google Scholar 

  • Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284

    Article  Google Scholar 

  • Meyers PA, Quinn JG (1973) Factors affecting the association of fatty acids with mineral particles in sea water. Geochim Cosmochim Acta 37:1745–1759

    Article  Google Scholar 

  • Milagres AM, Machuca A, Napoleão D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6

    Article  Google Scholar 

  • Mille G, Almallah M, Bianchi M, Van Wambeke F, Bertrand JC (1991) Effect of salinity on petroleum biodegradation. J Anal Chem 339:788–791

    Google Scholar 

  • Miller DJ, Hawthorne SB, Gizir AM, Clifford AA (1998) Solubility of polycyclic aromatic hydrocarbons in subcritical water from 298 K to 498 K. J Chem Eng Data 43:1043–1047

    Article  Google Scholar 

  • Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol Biochem 32:1161–1172

    Article  Google Scholar 

  • Mollea C, Bosco F, Ruggeri B (2005) Fungal biodegradation of naphthalene: microcosms studies. Chemosphere 60:636–643

    Article  Google Scholar 

  • Morgan P, Watkinson RJ (1994) Biodegradation of components of petroleum: biochemistry of microbial degradation Kluwer Academic Publishers, Dordrecht

  • Moscoso F, Teijiz I, Deive F, Sanromán M (2012) Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresour Technol 119:270–276

    Article  Google Scholar 

  • Mueller JG, Chapman PJ, Pritchard PH (1989) Creosote-contaminated sites their potential for bioremediation. Environ Sci Technol 23:1197–1201

    Article  Google Scholar 

  • Mukherji S, Chavan A (2012) Treatment of aqueous effluents containing non-aqueous phase liquids in rotating biological contactor with algal bacterial biofilm. Chem Eng J 200:459–470

    Article  Google Scholar 

  • Nautiyal CS (1999) An effcient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  Google Scholar 

  • Nicodem DE, Guedes CL, Correa RJ, Fernandes MCZ (1997) Photochemical processes and the environmental impact of petroleum spills. Biogeochemistry 39:121–138

    Article  Google Scholar 

  • Northcott GL, Jones KC (2001) Partitioning, extractability, and formation of nonextractable PAH residues in soil 1 Compound differences in aging and sequestration. Environ Sci Technol 35:1103–1110

    Article  Google Scholar 

  • Ortega-Calvo J, Tejeda-Agredano M, Jimenez-Sanchez C, Congiu E, Sungthong R, Niqui-Arroyo J, Cantos M (2013) Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? J Hazard Mater 261:733–745

    Article  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  Google Scholar 

  • Pathak GP, Losi A, Gärtner W (2012) Metagenome-based screening reveals worldwide distribution of LOV-domain proteins. Photochem Photobiol 88:107–118

    Article  Google Scholar 

  • Pelletier E, Delille D, Delille B (2004) Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar Environ Res 57:311–327

    Article  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, G-l Qiu (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  Google Scholar 

  • Perry J (1984) Microbial metabolism of cyclic alkanes: petroleum microbiology. Macmillan Publishing Coopration, New York

    Google Scholar 

  • Picado A, Nogueira A, Baeta-Hall L, Mendonça E, de Fátima-Rodrigues M, do Céu-Sàágua M, Martins A, Anselmo AM (2001) Landfarming in a PAH-contaminated soil. J Environ Sci Heal A 36:1579–1588

    Article  Google Scholar 

  • Prenafeta-Boldú FX, Luykx DM, Vervoort J, de Bont JA (2001) Fungal metabolism of toluene: monitoring of fluorinated analogs by 19F nuclear magnetic resonance spectroscopy. Appl Environ Microb 67:1030–1034

    Article  Google Scholar 

  • Rahman K, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat I (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource technol 90:159–168

    Article  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581

    Article  Google Scholar 

  • Rockland LB, Beuchat LB (1987) Water activity: theory and applications to food. Marcell Dekker, New York

    Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2010) Endophytic fungi, symbiotic lifestyle switching synnecrosis: the fungal community: Its organization and role in the ecosystem. CRC Press, Boca Raton

    Google Scholar 

  • Romero M, Cazau M, Giorgieri S, Arambarri A (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollut 101:355–359

    Article  Google Scholar 

  • Saichek RE, Reddy KR (2003) Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 51:273–287

    Article  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38:1331–1337

    Article  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (2000) A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J Bacteriol 182:2134–2141

    Article  Google Scholar 

  • Salanitro JP (2001) Bioremediation of petroleum hydrocarbons in soil. Adv Agron 72:53–105

    Article  Google Scholar 

  • Sayara T, Borràs E, Caminal G, Sarrà M, Sánchez A (2011) Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeterior Biodegrad 65:859–865

    Article  Google Scholar 

  • Scheller U, Zimmer T, Becher D, Schauer F, Schunck W-H (1998) Oxygenation cascade in conversion of n-alkanes to α, ω-dioic acids catalyzed by cytochrome P450 52A3. J Biol Chem 273:32528–32534

    Article  Google Scholar 

  • Schwab A, Su J, Wetzel S, Pekarek S, Banks M (1999) Extraction of petroleum hydrocarbons from soil by mechanical shaking. Environ Sci Technol 33:1940–1945

    Article  Google Scholar 

  • Shailubhai K (1986) Treatment of petroleum industry oil sludge in soil. Trends Biotechnol 4:202–206

    Article  Google Scholar 

  • Shor LM, Kosson DS, Rockne KJ, Young LY, Taghon GL (2004) Combined effects of contaminant desorption and toxicity on risk from PAH contaminated sediments. Risk Anal 24:1109–1120

    Article  Google Scholar 

  • Siddique LM, Yuming L, Lianqing L, Weinan P, Jiaying F, Genxing P, Jufeng Z, **wei Z, Xuhui Z (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain Field. Crop Res 144:113–118

    Article  Google Scholar 

  • Silva IS, Grossman M, Durrant LR (2009) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int Biodeterior Biodegrad 63:224–229

    Article  Google Scholar 

  • Simonich SL, Hites RA (1994) Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943

    Article  Google Scholar 

  • Stroud J, Paton G, Semple KT (2007) Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 102:1239–1253

    Article  Google Scholar 

  • Sun T-R, Cang L, Wang Q-Y, Zhou D-M, Cheng J-M, Xu H (2010) Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. J Hazard Mater 176:919–925

    Article  Google Scholar 

  • Thominette F, Verdu J (1984) Photo-oxidative behaviour of crude oils relative to sea pollution: part I Comparative study of various crude oils and model systems. Mar Chem 15:91–104

    Article  Google Scholar 

  • Valentin L, Feijoo G, Moreira M, Lema J (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeterior Biodegrad 58:15–21

    Article  Google Scholar 

  • Van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    Article  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol R 67:503–549

    Article  Google Scholar 

  • Vega-Jarquin C, Garcia-Mendoza M, Jablonowski N, Luna-Guido M, Dendooven L (2003) Rapid immobilization of applied nitrogen in saline–alkaline soils. Plant Soil 256:379–388

    Article  Google Scholar 

  • Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol B 8:163–178

    Article  Google Scholar 

  • Vives I, Grimalt JO, Fernandez P, Rosseland B (2004) Polycyclic aromatic hydrocarbons in fish from remote and high mountain lakes in Europe and Greenland. Sci Total Environ 324:67–77

    Article  Google Scholar 

  • Vonwedel RJ, Mosquera JF, Goldsmith CD, Hater GR, Wong A, Fox TA, Hunt WT, Paules MS, Quiros JM, Wiegand JW (1988) Bacterial biodegradation of petroleum hydrocarbons in groundwater: in situ augmented bioreclamation with enrichment isolates in California. Water Sci Technol 20:501–503

    Article  Google Scholar 

  • Vyas B, Bakowski S, Šašek V, Matucha M (1994) Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol 14:65–70

    Article  Google Scholar 

  • Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms: biosurfactants. Springer, New York

    Book  Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake D (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107

    Article  Google Scholar 

  • Wang Z, Chen S, Xu Y, Tang J (2012) Aging effects on sorption–desorption behaviors of PAHs in different natural organic matters. J Colloid Interface Sci 382:117–122

    Article  Google Scholar 

  • Weber FJ, Hage KC, De Bont J (1995) Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source. Appl Environ Microb 61:3562–3566

    Google Scholar 

  • Xu Y, Sun GD, ** JH, Liu Y, Luo M, Zhong ZP, Liu ZP (2014) Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. J Hazard Mater 264:430–438

    Article  Google Scholar 

  • Yadav J, Reddy C (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microb 59:756–762

    Google Scholar 

  • Youngblood W, Blumer M (1975) Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim Cosmochim Ac 39:1303–1314

    Article  Google Scholar 

  • Yu K, Wong A, Yau K, Wong Y, Tam N (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  Google Scholar 

  • Zhanga K, Huaa XF, Hana HL, Wanga J, Miaob CC, Xuc YY, Huangd ZD, Zhangd H, Yangd JM, **b WB, Liuc YM, Liua Z (2008) Enhanced bioaugmentation of petroleum- and salt-contaminated soil using wheat straw. Chemosphere 73:1387–1392

    Article  Google Scholar 

  • Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR (2007) Conformational switching in the fungal light sensor Vivid. Science 316:1054–1057

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Higher Education Commission (HEC), and Department of Environmental Sciences, Quaid-i-Azam University, Islamabad for providing faculties required for this assignment. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. In the end, no financial disclosures or conflicts of interest is declared by authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazhar Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.H.A., Ayaz, M., Arshad, M. et al. Biogeochemical Cycle, Occurrence and Biological Treatments of Polycyclic Aromatic Hydrocarbons (PAHs). Iran J Sci Technol Trans Sci 43, 1393–1410 (2019). https://doi.org/10.1007/s40995-017-0393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0393-8

Keywords

Navigation