Log in

Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone

  • Research Paper
  • Published:
Glass Structures & Engineering Aims and scope Submit manuscript

A Correction to this article was published on 13 December 2017

This article has been updated

Abstract

The present paper proposes two methodologies of identifying hyperelastic material parameters of thin structural silicones based on so-called direct and inverse methods. Based on part I of this paper, analytical investigations were performed to conduct homogeneous experiments with structural silicones. To obtain more insight wether or not an experiment provides a homogeneous stress state, the so-called triaxiality was introduced, which allows one to illustrate differences between homogeneous and inhomogeneous experiments. With the help of this scalar, it was possible to design experimental test setups, which ensure a homogeneous stress and strain distribution within the tested rubber-like material. Furthermore an engineering approach to determine the testing speed of arbitrary experiments dependent on one reference testing speed and experiment was presented. This approach ensured equivalent strain energies between arbitrary and reference test specimens during testing, by which expensive strain rate controlled experiments can be relinquished. Based on these analytical studies, experimental data could be provided for the material parameter identification, which exhibits firstly a nearly homogeneous stress state in accordance to the desired stress and strain field of the applied mathematical model and secondly providing nearly equivalent strain energies within different experimental test set-ups and geometries of test specimens. Returning to the present paper, the first methodology identifies simultaneously hyperelastic material parameters based on a set of conventional and homogeneous experimental tests, like uniaxial tension and uniaxial compression, biaxial tension as well as shear-pancake tests. The second methodology determines inversely hyperelastic material parameters utilizing the inverse Finite Element Method based on one single unconventional and inhomogeneous experimental test, here a microindentation test. The main idea is to obtain reliable hyperelastic material parameters based on a single, inhomogeneous experiment to avoid many, time-consuming homogeneous experiments. To validate the inversely determined hyperelastic material parameters, simultaneous multi-experiment data fits are performed to relate the obtained material parameters to those of the microindentation tests. Considering the set of homogeneous experiments, two classical hyperelastic constitutive equations (Neo-Hooke and Mooney–Rivlin) were utilized to determine constitutive parameters. Due to the simplicity of the classical material laws, a more sophisticated, novel phenomenological hyperelastic material law will be proposed and compared with the results of the classical models respectively the results obtained by a modern hyperelastic material model after Kaliske & Heinrich, which generally delivers outstanding results for the material parameter identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 13 December 2017

    The name of the second author contained a ty** error. The original article has been corrected.

Abbreviations

UT:

Uniaxial tension test

UC:

Uniaxial compression test

BT:

Biaxial tension test

SPC:

Shear pancake test

MI:

Microindentation test

MPI:

Material parameter identification

iFEM:

Inverse finite element method

FEMU:

Finite element model updating

TRM:

Trust region method

LAR:

Least absolute residuals

MOP:

Meta model of optimal prognosis

RMSE:

Root mean squared error

\({\left( \bullet \right) _{\mathrm{{iso}}}}\) :

Isochoric/volume-preserving

tr\(\left( \bullet \right) \) :

Trace of argument

Grad\(\left( \bullet \right) \) :

Gradient of argument

F :

Deformation gradient

J :

Relative volume

C :

Right Cauchy-Green tensor

b :

Left Cauchy-Green tensor

\({\bar{\mathbf{b}}}\) :

Isochoric left Cauchy-Green tensor

\(\lambda _i\) :

Principal stretches

\(\varepsilon _i^{\mathrm{{eng}}}\) :

Engineering strain

\({I_{\mathbf{{ b}}}}\) :

First principal strain invariant of \(\mathbf b \)

\({II_{\mathbf{{ b}}}}\) :

Second principal strain invariant of \(\mathbf b \)

\({III_{\mathbf{{ b}}}}\) :

Third principal strain invariant of \(\mathbf b \)

\(t_i\) :

Principal engineering stress

\(\sigma _i\) :

Principal Cauchy stress

p :

Hydrostatic stress

\(\varPsi ( \bullet )\) :

Helmholtz free energy

\(\mathcal {S}\) :

Objective function

\(\varPhi _{{k}}\) :

Trigger function

p :

Vector of material parameters

References

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  MATH  Google Scholar 

  • Avril, S., Bonnet, M., Bretelle, A.S., Grediac, M., Hild, F., Ienny, P., Latourte, F., Lemosse, D., Pagano, S., Pagnacco, E.: Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 48(4), 381–402 (2008). https://doi.org/10.1007/s11340-008-9148-y

    Article  Google Scholar 

  • Berselli, G., Vertechy, R., Pellicciari, M., Vassura, G.: Hyperelastic modeling of rubber-like photopolymers for additive manufacturing processes. In: Hoque M. (ed.) Rapid Prototy** Technology—Principles and Functional Requirements, pp. 135–152. InTech (2011). https://doi.org/10.5772/20174

  • Chaves, E.W.V.: Notes on Continuum Mechanics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Chen, Z., Scheffer, T., Seibert, H., Diebels, S.: Macroindentation of a soft polymer: identification of hyperelasticity and validation by uni/biaxial tensile tests. Mech. Mater. 64, 111–127 (2013). https://doi.org/10.1016/j.mechmat.2013.05.003

    Article  Google Scholar 

  • Cottin, N., Felgenhauer, H.P., Natke, H.G.: On the parameter identification of elastomechanical systems using input and output residuals. Ingenieur-Archiv 54(5), 378–387 (1984). https://doi.org/10.1007/bf00532820

    Article  MATH  Google Scholar 

  • Deam, R.T., Edwards, S.F.: The theory of rubber elasticity. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 280(1296), 317–353 (1976)

  • Dow Corning Europe SA.: On macroscopic effects of heterogeneity in elastoplastic media at finite strain. glasstec (2017)

  • Drass, M., Schneider, J.: Constitutive modeling of transparent structural silicone adhesive—TSSA. In: Schrödter J. (ed.) 14. Darmstädter Kunststofftage, vol. 14 (2016a)

  • Drass, M., Schneider, J.: On the mechanical behavior of transparent structural silicone adhesive (TSSA). In: Material Modelling, Multi-Scale Modelling, Porous Media, pp 446–451. CRC Press (2016b). https://doi.org/10.1201/9781315641645-74

  • Drass, M., Schwind, G., Schneider, J., Kolling, S.: Adhesive connections in glass structures-part i: experiments and analytics on thin structural silicone. Glass Struct. Eng. (2017). https://doi.org/10.1007/s40940-017-0046-5

    Google Scholar 

  • Edwards, S.F., Vilgis, T.A.: The tube model theory of rubber elasticity. Rep. Prog. Phys. 51(2), 243 (1988)

    Article  MathSciNet  Google Scholar 

  • Farhat, C., Hemez, F.M.: Updating finite element dynamic models using an element-by-element sensitivity methodology. AIAA J. 31(9), 1702–1711 (1993)

    Article  MATH  Google Scholar 

  • Gorash, Y., Comlekci, T., Hamilton, R.: Cae-based application for identification and verification of hyperelastic parameters. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. (2015) https://doi.org/10.1177/1464420715604004

  • Hadamard, J.: Sur les problèmes aux dérivés partielles et leur signification physique. Princet. Univ. Bull. 13, 49–52 (1902)

    Google Scholar 

  • Hartmann, S.: Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int. J. Solids Struct. 38(44), 7999–8018 (2001). https://doi.org/10.1016/S0020-7683(01)00018-X

    Article  MATH  Google Scholar 

  • Hauser, C., Walz, B., Mainçon, P., Barnardo, C.: Application of inverse fem to earth pressure estimation. Finite Elem. Anal. Des. 44(11), 705–714 (2008). https://doi.org/10.1016/j.finel.2008.03.005

    Article  Google Scholar 

  • Heinrich, G., Straube, E.: On the strength and deformation dependence of the tube-like topological constraints of polymer networks, melts and concentrated solutions. i. The polymer network case. Acta Polym. 34(9), 589–594 (1983). https://doi.org/10.1002/actp.1983.010340909

    Article  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics, vol. 24. Wiley Chichester, Hoboken (2000)

    MATH  Google Scholar 

  • Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012). https://doi.org/10.1016/j.mechmat.2012.03.007

    Article  Google Scholar 

  • Iman, R.L.: Latin Hypercube Sampling. Wiley, Hoboken (2008). https://doi.org/10.1002/9780470061596.risk0299

  • Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 11(3), 311–334 (1982). https://doi.org/10.1080/03610918208812265

    Article  MATH  Google Scholar 

  • James, H.M., Guth, E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11(10), 455–481 (1943). https://doi.org/10.1063/1.1723785

    Article  Google Scholar 

  • Kaliske, M., Heinrich, G.: An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation. Rubber Chem. Technol. 72(4), 602–632 (1999)

    Article  Google Scholar 

  • Khajehsaeid, H., Naghdabadi, R., Arghavani, J.: A strain energy function for rubber-like materials. Const. Models Rubber 8, 205 (2013)

    MATH  Google Scholar 

  • Kolling, S., Bois, P.A.D., Benson, D.J., Feng, W.W.: A tabulated formulation of hyperelasticity with rate effects and damage. Comput. Mech. 40(5), 885–899 (2007). https://doi.org/10.1007/s00466-006-0150-x

    Article  MATH  Google Scholar 

  • Kuhn, W.: Über die gestalt fadenförmiger moleküle in lösungen. Kolloid-Zeitschrift 68(1), 2–15 (1934). https://doi.org/10.1007/BF01451681

    Article  Google Scholar 

  • Kuhn, W.: Beziehungen zwischen molekülgröße, statistischer molekülgestalt und elastischen eigenschaften hochpolymerer stoffe. Kolloid-Zeitschrift 76(3), 258–271 (1936a). https://doi.org/10.1007/BF01451143

    Article  Google Scholar 

  • Kuhn, W.: Gestalt und eigenschaften fadenförmiger moleküle in lösungen (und im elastisch festen zustande). Angew. Chem. 49(48), 858–862 (1936b). https://doi.org/10.1002/ange.19360494803

    Article  Google Scholar 

  • Kuhn, W., Grün, F.: Beziehungen zwischen elastischen konstanten und dehnungsdoppelbrechung hochelastischer stoffe. Kolloid-Zeitschrift 101(3), 248–271 (1942). https://doi.org/10.1007/BF01793684

    Article  Google Scholar 

  • Le Saux, V., Marco, Y., Bles, G., Calloch, S., Moyne, S., Plessis, S., Charrier, P.: Identification of constitutive model for rubber elasticity from micro-indentation tests on natural rubber and validation by macroscopic tests. Mech. Mater. 43(12), 775–786 (2011)

    Article  Google Scholar 

  • Mainçon, P.: Inverse fem i: load and response estimates from measurements. In: Proceedings of 2nd International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa (2004a)

  • Mainçon, P.: Inverse fem ii: dynamic and non-linear problems. In: Proceedings of 2nd International Conference on Structural Engineering, Mechanics and Computation, Cape Town, South Africa (2004b)

  • Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006). https://doi.org/10.5254/1.3547969

    Article  Google Scholar 

  • Marco, Y., Le Saux, V., Bles, G., Calloch, S., Charrier, P.: Identification of local constitutive model from micro-indentation testing. Const. Models Rubber VII, 177–182 (2011)

  • Marlow, R.: A general first-invariant hyperelastic constitutive model in constitutive models for rubber iii. In: Proceedings of European conference London, pp. 15–17 (2003)

  • Miehe, C., Schänzel, L.M.: Phase field modeling of fracture in rubbery polymers. Part i: finite elasticity coupled with brittle failure. J. Mech. Phys. Solids 65, 93–113 (2013). https://doi.org/10.1016/j.jmps.2013.06.007

    Article  MathSciNet  MATH  Google Scholar 

  • Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials–part i: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940). https://doi.org/10.1063/1.1712836

    Article  MATH  Google Scholar 

  • Nelder, J.A.: Inverse polynomials, a useful group of multi-factor response functions. Biometrics 22(1), 128–141 (1966)

    Article  Google Scholar 

  • Ogden, R.: Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. R. Soc. Lond A Math. Phys. Eng. Sci. 328(1575), 567–583 (1972). https://doi.org/10.1098/rspa.1972.0096

    MATH  Google Scholar 

  • Ogden, R., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34(6), 484–502 (2004)

    Article  MATH  Google Scholar 

  • Overend, M.: Optimising connections in structural glass. In: Proceedings of 2nd International conference on Glass in Buildings (2005)

  • Pacheco, C.C., Dulikravich, G.S., Vesenjak, M.: Inverse parameter identification in solid mechanics using bayesian statistics, response surfaces and minimization. Technische Mechanik 36(1–2), 110–121 (2016)

    Google Scholar 

  • Pagnacco, E., Lemosse, D., Hild, F., Amiot, F.: Inverse strategy from displacement field measurement and distributed forces using fea. In: SEM Annual Conference and Exposition on Experimental and Applied Mechanics (2005)

  • Rivlin, R.S.: Large elastic deformations of isotropic materials. iv. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 241(835), 379–397 (1948)

  • Santarsiero, M., Louter, C., Nussbaumer, A.: The mechanical behaviour of sentryglas ionomer and tssa silicon bulk materials at different temperatures and strain rates under uniaxial tensile stress state. Glass Struct. Eng. (2016). https://doi.org/10.1007/s40940-016-0018-1

    Google Scholar 

  • Schwarz, C., Ackert, P., Rössinger, M., Hofmann, A., Mauermann, R., Landgreber, D.: Mathematical optimization of clam** processes in car-body production. In: 12. Weimarer Optimierungs- und Stochastiktage (2015)

  • Shkarayev, S., Krashanitsa, R., Tessler, A.: An inverse interpolation method utilizing in-flight strain measurements for determining loads and structural response of aerospace vehicles. Technical Report, NASA (2001)

  • Shutov, A., Kreißig, R.: Regularized strategies for material parameter identification in the context of finite strain plasticity. Technische Mechanik 30(1–3), 280–295 (2010)

    Google Scholar 

  • Sitte, S., Brasseur, M., Carbary, L., Wolf, A.: Preliminary evaluation of the mechanical properties and durability of transparent structural silicone adhesive (tssa) for point fixing in glazing. J. ASTM Int. 10(8), 1–27 (2011). https://doi.org/10.1520/JAI104084

    Google Scholar 

  • Tessler, A., Spangler, J.L.: Inverse fem for full-field reconstruction of elastic deformations in shear deformable plates and shells. In: Proceedings of Second European Workshop on Structural Health Monitoring, pp. 83–90 (2004)

  • Treloar, L.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

  • Wineman, A.: Some results for generalized neo-hookean elastic materials. Int. J. Non-Linear Mech. 40(2), 271–279 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.05.007

    Article  MathSciNet  MATH  Google Scholar 

  • Yeoh, O.H., Fleming, P.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. B Polym. Phys. 35(12), 1919–1931 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dow Corning Inc. and Interpane Glas Industrie AG gratefully for their support during our studies by providing us testing material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Drass.

Additional information

The original article has been revised: the name of the second author has been corrected.

A correction to this article is available online at https://doi.org/10.1007/s40940-017-0054-5.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 92 KB)

Appendices

Appendix-A

A data package of the presented experimental raw data including the engineering stress strain responses for UT, UC, BT, SPC experiments based on mean values can be granted upon e-mail request to the authors. Table 2 gives an overview of the testing data and the utilized fitting algorithm.

Table 2 Summary of experiments (see part I)

Appendix-B

In this appendix, the determined constitutive material parameters for thin structural silicone will be provided based on the applied two methodologies - direct/inverse method. The constitutive parameters are listed with respect to the applied constitutive model (Table 3).

Table 3 Material parameters of MPI utilizing the direct and inverse method
Fig. 10
figure 10figure 10

Illustration of the fitting and simulation results for the direct and inverse method utilizing different constitutive models: ad NH model; eh ExtTube model and il MD model

Appendix-C

For the sake of completeness, in the following graphs the comparison for the conventional and unconventional MPI will be illustrated for the material models NH, ExtTube and MD (see Fig. 10) in accordance to Fig. 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drass, M., Schwind, G., Schneider, J. et al. Adhesive connections in glass structures—part II: material parameter identification on thin structural silicone. Glass Struct Eng 3, 55–74 (2018). https://doi.org/10.1007/s40940-017-0048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40940-017-0048-3

Keywords

Navigation