Log in

Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering

  • Review Paper
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 21 February 2017

Abstract

The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology, and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly(lactide-co-glycolide) (PLAGA). Laurencin and co-workers have demonstrated the exploitation of the synthetic flexibility of polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues.

Lay Summary

Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering as well as other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed169.

    Article  Google Scholar 

  2. Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regen Eng Transl Med. 2015;1(1):1–3.

    Article  Google Scholar 

  3. Reichert WM, Ratner BD, Anderson J, Coury A, Hoffman AS, Laurencin CT, et al. 2010 Panel on the biomaterials grand challenges. J Biomed Mater Res A. 2011;96(2):275–87.

    Article  Google Scholar 

  4. Polyphosphazenes for biomedical applications (1). Hoboken, US: Wiley; 2009.

  5. Allcock HR, Morozowich NL. Bioerodible polyphosphazenes and their medical potential. Polym Chem. 2012;3(3):578–90.

    Article  Google Scholar 

  6. Laurencin CT, Norman ME, Elgendy HM, El‐Amin SF, Allcock HR, Pucher SR, et al. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res. 1993;27(7):963–73.

    Article  Google Scholar 

  7. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.

    Article  Google Scholar 

  8. Allcock HR. The synthesis of functional polyphosphazenes and their surfaces. Appl Organomet Chem. 1998;12(10–11):659–66.

    Article  Google Scholar 

  9. Baillargeon AL, Mequanint K. Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. Biomed Res Int. 2014;2014:761373.

    Article  Google Scholar 

  10. Rothemund S, Teasdale I. Preparation of polyphosphazenes: a tutorial review. Chem Soc Rev. 2016.

  11. Borden M, Attawia M, Khan Y, El-Amin S, Laurencin C. Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. Bone Joint J. 2004;86(8):1200–8.

    Article  Google Scholar 

  12. Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone. 2010;46(2):386–95.

    Article  Google Scholar 

  13. Carampin P, Conconi MT, Lora S, Menti AM, Baiguera S, Bellini S, et al. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res A. 2007;80(3):661–8.

    Article  Google Scholar 

  14. Deng M, James R, Laurencin CT, Kumbar SG. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. IEEE Trans NanoBiosci. 2012;11(1):3–14.

    Article  Google Scholar 

  15. Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter. 2010;6(14):3119–32.

    Article  Google Scholar 

  16. Jabbarzadeh E, Deng M, Lv Q, Jiang T, Khan YM, Nair LS, et al. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2012;100B(8):2187–96.

    Article  Google Scholar 

  17. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.

    Article  Google Scholar 

  18. Deng M, Nair LS, Nukavarapu SP, Jiang T, Kanner WA, Li X, et al. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials. 2010;31(18):4898–908.

    Article  Google Scholar 

  19. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, et al. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering. J Biomed Mater Res A. 2010;92(1):114–25.

    Article  Google Scholar 

  20. Ibim SE, Ambrosio AM, Kwon MS, El-Amin SF, Allcock HR, Laurencin CT. Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies. Biomaterials. 1997;18(23):1565–9.

    Article  Google Scholar 

  21. Krogman NR, Steely L, Hindenlang MD, Nair LS, Laurencin CT, Allcock HR. Synthesis and characterization of polyphosphazene-block-polyester and polyphosphazene-block-polycarbonate macromolecules. Macromolecules. 2008;41(4):1126–30.

    Article  Google Scholar 

  22. Krogman NR, Weikel AL, Nguyen NQ, Kristhart KA, Nukavarapu SP, Nair LS, et al. Hydrogen bonding in blends of polyesters with dipeptide‐containing polyphosphazenes. J Appl Polym Sci. 2010;115(1):431–7.

    Article  Google Scholar 

  23. Shan D, Huang Z, Zhao Y, Cai Q, Yang X. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene. Biomed Mater. 2014;9(6):061001.

    Article  Google Scholar 

  24. Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21(24):2615–21.

    Article  Google Scholar 

  25. Landes CA, Ballon A, Roth C. Maxillary and mandibular osteosyntheses with PLGA and P (L/DL) LA implants: a 5-year inpatient biocompatibility and degradation experience. Plast Reconstr Surg. 2006;117(7):2347–60.

    Article  Google Scholar 

  26. Conconi MT, Lora S, Menti AM, Carampin P, Parnigotto PP. In vitro evaluation of poly[bis(ethyl alanato)phosphazene] as a scaffold for bone tissue engineering. Tissue Eng. 2006;12(4):811–9.

    Article  Google Scholar 

  27. Nair LS, Bhattacharyya S, Bender JD, Greish YE, Brown PW, Allcock HR, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules. 2004;5(6):2212–20.

    Article  Google Scholar 

  28. Sethuraman S, Nair LS, El-Amin S, Farrar R, Nguyen MT, Singh A, et al. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. J Biomed Mater Res A. 2006;77(4):679–87.

    Article  Google Scholar 

  29. Duan S, Yang X, Mao J, Qi B, Cai Q, Shen H, et al. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography. J Biomed Mater Res A. 2013;101(2):307–17.

    Article  Google Scholar 

  30. Rothemund S, Aigner TB, Iturmendi A, Rigau M, Husar B, Hildner F, et al. Degradable glycine-based photo-polymerizable polyphosphazenes for use as scaffolds for tissue regeneration. Macromol Biosci. 2015;15(3):351–63.

    Article  Google Scholar 

  31. Allcock HR. The expanding field of polyphosphazene high polymers. Dalton Trans. 2016;45(5):1856–62.

    Article  Google Scholar 

  32. Allcock H. Phosphorus-nitrogen compounds: cyclic, linear, and high polymeric system. Elsevier; 2012

  33. Allcock HR. Heteroatom ring systems and polymers. 1967.

  34. Allcock HR. Chemistry and applications of polyphosphazenes. Wiley-Interscience; 2003.

  35. Oredein-McCoy O, Krogman NR, Weikel AL, Hindenlang MD, Allcock HR, Laurencin CT. Novel factor-loaded polyphosphazene matrices: potential for driving angiogenesis. J Microencapsul. 2009;26(6):544–55.

    Article  Google Scholar 

  36. Nair LS, Lee DA, Bender JD, Barrett EW, Greish YE, Brown PW, et al. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes. J Biomed Mater Res A. 2006;76(1):206–13.

    Article  Google Scholar 

  37. Peach MS, James R, Toti US, Deng M, Morozowich NL, Allcock HR, et al. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells. Biomed Mater. 2012;7(4):045016.

    Article  Google Scholar 

  38. Singh A, Krogman NR, Sethuraman S, Nair LS, Sturgeon JL, Brown PW, et al. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Biomacromolecules. 2006;7(3):914–8.

    Article  Google Scholar 

  39. Allcock HR. Inorganic–organic polymers. Adv Mater. 1994;6(2):106–15.

    Article  Google Scholar 

  40. Sethuraman S, Nair LS, El-Amin S, Nguyen M-T, Singh A, Krogman N, et al. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: side group effects. Acta Biomater. 2010;6(6):1931–7.

    Article  Google Scholar 

  41. Allcock HR, Crane CA, Morrissey CT, Nelson JM, Reeves SD, Honeyman CH. Manners I: “Living” cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights. Macromolecules. 1996;29(24):7740–7.

    Article  Google Scholar 

  42. Deng M, Kumbar SG, Nair LS, Weikel AL, Allcock HR, Laurencin CT. Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene–polyester blend nanofiber matrices for load-bearing bone regeneration. Adv Funct Mater. 2011;21(14):2641–51.

    Article  Google Scholar 

  43. Allcock H. Recent advances in phosphazene (phosphonitrilic) chemistry. Chem Rev. 1972;72(4):315–56.

    Article  Google Scholar 

  44. Allcock H, Fuller T, Matsumura K. Hydrolysis pathways for aminophosphazenes. Inorg Chem. 1982;21(2):515–21.

    Article  Google Scholar 

  45. Allcock HR, Pucher SR, Scopelianos AG. Poly [(amino acid ester) phosphazenes] as substrates for the controlled release of small molecules. Biomaterials. 1994;15(8):563–9.

    Article  Google Scholar 

  46. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–64.

    Article  Google Scholar 

  47. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Krogman NR, et al. Miscibility and in vitro osteocompatibility of biodegradable blends of poly [(ethyl alanato)(p-phenyl phenoxy) phosphazene] and poly (lactic acid-glycolic acid). Biomaterials. 2008;29(3):337–49.

    Article  Google Scholar 

  48. Heyde M, Moens M, Van Vaeck L, Shakesheff KM, Davies MC, Schacht EH. Synthesis and characterization of novel poly[(organo)phosphazenes] with cell-adhesive side groups. Biomacromolecules. 2007;8(5):1436–45.

    Article  Google Scholar 

  49. Veronese F, Marsilio F, Caliceti P, De Filippis P, Giunchedi P, Lora S. Polyorganophosphazene microspheres for drug release: polymer synthesis, microsphere preparation, in vitro and in vivo naproxen release. J Control Release. 1998;52(3):227–37.

    Article  Google Scholar 

  50. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, et al. In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater. 2010;20(17):2743–957.

    Article  Google Scholar 

  51. Ramani R, Alam S. Composition optimization of PEEK/PEI blend using model-free kinetics analysis. Thermochim Acta. 2010;511(1–2):179–88.

    Article  Google Scholar 

  52. Utracki L, Favis B. Polymer alloys and blends, vol. 4. New York: Marcel Dekker; 1989.

    Google Scholar 

  53. Parameswaranpillai J, Thomas S, Grohens Y. Polymer blends: state of the art, new challenges, and opportunities. Characterization of polymer blends: miscibility, morphology and interfaces. 2014. p. 1–6.

  54. Zhang QS, Yan YH, Li SP, Feng T. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application. Biomed Mater. 2009;4(3):035008.

    Article  Google Scholar 

  55. Deng M. Novel biocompatible polymeric blends for bone regeneration: material and matrix design and development. 2010.

  56. Allcock HR. Polyphosphazenes: new polymers with inorganic backbone atoms. Science (New York, NY). 1976;193(4259):1214–9.

    Article  Google Scholar 

  57. Allcock HR, Ambrosio AM. Synthesis and characterization of pH-sensitive poly (organophosphazene) hydrogels. Biomaterials. 1996;17(23):2295–302.

    Article  Google Scholar 

  58. Chaubal MV, Gupta AS, Lopina ST, Bruley DF. Polyphosphates and other phosphorus-containing polymers for drug delivery applications. Crit Rev Ther Drug Carrier Syst. 2003;20(4):295–315.

    Article  Google Scholar 

  59. Morozowich NL, Modzelewski T, Allcock HR. Synthesis of phosphonated polyphosphazenes via two synthetic routes. Macromolecules. 2012;45(19):7684–91.

    Article  Google Scholar 

  60. Kumbar S, Laurencin C, Deng M. Natural and synthetic biomedical polymers. Newnes; 2014.

  61. Allcock HR. Recent developments in polyphosphazene materials science. Curr Opinion Solid State Mater Sci. 2006;10(5–6):231–40.

    Article  Google Scholar 

  62. Allcock HR. Expanding options in polyphosphazene biomedical research. In: Polyphosphazenes for biomedical applications. Wiley; 2008. p. 15–43.

  63. Henke H, Wilfert S, Iturmendi A, Brüggemann O, Teasdale I. Branched polyphosphazenes with controlled dimensions. J Polym Sci A Polym Chem. 2013;51(20):4467–73.

    Article  Google Scholar 

  64. Krogman NR, Weikel AL, Kristhart KA, Nukavarapu SP, Deng M, Nair LS, et al. The influence of side group modification in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA. Biomaterials. 2009;30(17):3035–41.

    Article  Google Scholar 

  65. Tian Z, Zhang Y, Liu X, Chen C, Guiltinan MJ, Allcock HR. Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polym Chem. 2013;4(6):1826–35.

    Article  Google Scholar 

  66. Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromolecules. 2004;5(5):1999–2006.

    Article  Google Scholar 

  67. Cohen S, Bano MC, Cima LG, Allcock HR, Vacanti JP, Vacanti CA, et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater. 1993;13(1–4):3–10.

    Article  Google Scholar 

  68. Deng M, Nair LS, Krogman NR, Allcock HR, Laurencin CT. Biodegradable polyphosphazene blends for biomedical applications. In: Polyphosphazenes for biomedical applications. Wiley; 2008. p. 139–154.

  69. Stone DA, Allcock HR. A new polymeric intermediate for the synthesis of hybrid inorganic–organic polymers. Macromolecules. 2006;39(15):4935–7.

    Article  Google Scholar 

  70. Ambrosio AMA, Allcock HR, Katti DS, Laurencin CT. Degradable polyphosphazene/poly(α-hydroxyester) blends: degradation studies. Biomaterials. 2002;23(7):1667–72.

    Article  Google Scholar 

  71. Morozowich NL, Weikel AL, Nichol JL, Chen C, Nair LS, Laurencin CT, et al. Polyphosphazenes containing vitamin substituents: synthesis, characterization, and hydrolytic sensitivity. Macromolecules. 2011;44(6):1355–64.

    Article  Google Scholar 

  72. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  Google Scholar 

  73. Andrianov AK. Water-soluble polyphosphazenes for biomedical applications. J Inorg Organomet Polym Mater. 2006;16(4):397–406.

    Article  Google Scholar 

  74. Lakshmi S, Katti DS, Laurencin CT. Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev. 2003;55(4):467–82.

    Article  Google Scholar 

  75. Nukavarapu SP, Kumbar SG, Allcock HR, Laurencin CT. Biodegradable polyphosphazene scaffolds for tissue engineering. In: Polyphosphazenes for biomedical applications. Wiley; 2008. p. 117–138.

  76. Allcock H, Fuller T, Mack D, Matsumura K, Smeltz KM. Synthesis of poly[(amino acid alkyl ester) phosphazenes]. Macromolecules. 1977;10(4):824–30.

    Article  Google Scholar 

  77. Allcock HR, Pucher SR. Polyphosphazenes with glucosyl and methylamino, trifluoroethoxy, phenoxy, or (methoxyethoxy) ethoxy side groups. Macromolecules. 1991;24(1):23–34.

    Article  Google Scholar 

  78. Laurencin CT, El‐Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, et al. A highly porous 3‐dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res. 1996;30(2):133–8.

    Article  Google Scholar 

  79. Modzelewski T, Wonderling NM, Allcock HR. Polyphosphazene elastomers containing interdigitated oligo-p-phenyleneoxy side groups: synthesis, mechanical properties, and x-ray scattering studies. Macromolecules. 2015;48(14):4882–90.

    Article  Google Scholar 

  80. Weikel AL, Krogman NR, Nguyen NQ, Nair LS, Laurencin CT, Allcock HR. Polyphosphazenes that contain dipeptide side groups: synthesis, characterization, and sensitivity to hydrolysis. Macromolecules. 2009;42(3):636–9.

    Article  Google Scholar 

  81. Weikel AL, Owens SG, Morozowich NL, Deng M, Nair LS, Laurencin CT, et al. Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends. Biomaterials. 2010;31(33):8507–15.

    Article  Google Scholar 

  82. Adibi S. Glycyl-dipeptides: new substrates for protein nutrition. J Lab Clin Med. 1989;113(6):665–73.

    Google Scholar 

  83. El-Amin SF, Kwon MS, Starnes T, Allcock HR, Laurencin CT. The biocompatibility of biodegradable glycine containing polyphosphazenes: a comparative study in bone. J Inorg Organomet Polym Mater. 2006;16(4):387–96.

    Article  Google Scholar 

  84. Kumbar SG, Bhattacharyya S, Nukavarapu SP, Khan YM, Nair LS, Laurencin CT. In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J Inorg Organomet Polym Mater. 2006;16(4):365–85.

    Article  Google Scholar 

  85. Allcock HR, Pucher SR, Scopelianos AG. Poly[(amino acid ester) phosphazenes]: synthesis, crystallinity, and hydrolytic sensitivity in solution and the solid state. Macromolecules. 1994;27(5):1071–5.

    Article  Google Scholar 

  86. Krogman NR, Singh A, Nair LS, Laurencin CT, Allcock HR. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends. Biomacromolecules. 2007;8(4):1306–12.

    Article  Google Scholar 

  87. Laurencin C, Morris C, Pieere-Jaques H, Schwartz E, Zou L. The development of bone bioerodible polymer composites for skeletal tissue regeneration: studies of initial cell adhesion and spread. Tran Orthop Res Soc. 1990;36:383.

    Google Scholar 

  88. Nair LS, Bender JD, Singh A, Sethuraman S, Greish YE, Brown PW, et al. Biodegradable poly[bis (ethyl alanato) phosphazene]-poly (lactide-co-glycolide) blends: miscibility and osteocompatibility evaluations. In: MRS Proceedings. Cambridge Univ Press; 2004. Y9. 7.

  89. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, et al. In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide‐based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater. 2010;20(17):2794–806.

    Article  Google Scholar 

  90. Borden M, Attawia M, Khan Y, Laurencin CT. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials. 2002;23(2):551–9.

    Article  Google Scholar 

  91. Borden M, El-Amin SF, Attawia M, Laurencin CT. Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair. Biomaterials. 2003;24(4):597–609.

    Article  Google Scholar 

  92. Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3(2):61–102.

    Article  Google Scholar 

  93. Qiu LY. In vitro and in vivo degradation study on novel blends composed of polyphosphazene and polyester or polyanhydride. Polym Int. 2002;51(6):481–7.

    Article  Google Scholar 

  94. Qiu LY, Zhu KJ. Novel blends of poly[bis (glycine ethyl ester) phosphazene] and polyesters or polyanhydrides: compatibility and degradation characteristics in vitro. Polym Int. 2000;49(11):1283–8.

    Article  Google Scholar 

  95. Ambrosio AM, Sahota JS, Runge C, Kurtz SM, Lakshmi S, Allcock HR, et al. Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag. 2003;22(5):18–26.

    Article  Google Scholar 

  96. Peach MS, Kumbar SG, James R, Toti US, Balasubramaniam D, Deng M, et al. Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration. J Biomed Nanotechnol. 2012;8(1):107–24.

    Article  Google Scholar 

  97. Nichol JL, Morozowich NL, Allcock HR. Biodegradable alanine and phenylalanine alkyl ester polyphosphazenes as potential ligament and tendon tissue scaffolds. Polym Chem. 2013;4(3):600–6.

    Article  Google Scholar 

  98. Langone F, Lora S, Veronese FM, Caliceti P, Parnigotto PP, Valenti F, et al. Peripheral nerve repair using a poly (organo) phosphazene tubular prosthesis. Biomaterials. 1995;16(5):347–53.

    Article  Google Scholar 

  99. Zhang Q, Yan Y, Li S, Feng T. The synthesis and characterization of a novel biodegradable and electroactive polyphosphazene for nerve regeneration. Mater Sci Eng C. 2010;30(1):160–6.

    Article  Google Scholar 

  100. Modzelewski T, Wilts E, Allcock HR. Elastomeric polyphosphazenes with phenoxy-cyclotriphosphazene side groups. Macromolecules. 2015;48(20):7543–9.

    Article  Google Scholar 

  101. Xu J, Zhu X, Qiu L. Polyphosphazene vesicles for co-delivery of doxorubicin and chloroquine with enhanced anticancer efficacy by drug resistance reversal. Int J Pharm. 2016;498(1–2):70–81.

    Article  Google Scholar 

  102. Veronese FM, Marsilio F, Lora S, Caliceti P, Passi P, Orsolini P. Polyphosphazene membranes and microspheres in periodontal diseases and implant surgery. Biomaterials. 1999;20(1):91–8.

    Article  Google Scholar 

  103. Ibim SM, El-Amin SF, Goad ME, Ambrosio AM, Allcock HR, Laurencin CT. In vitro release of colchicine using poly(phosphazenes): the development of delivery systems for musculoskeletal use. Pharm Dev Technol. 1998;3(1):55–62.

    Article  Google Scholar 

  104. Schacht E, Vandorpe J, Lemmouchi Y, Dejardin S, Seymour L. Degradable polyphosphazenes for biomedical applications. Frontiers in biomedical polymer applications of polymers. Lancaster PA: Technomic; 1998. p. 7–42.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s40883-017-0026-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogueri, K.S., Ivirico, J.L.E., Nair, L.S. et al. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. Regen. Eng. Transl. Med. 3, 15–31 (2017). https://doi.org/10.1007/s40883-016-0022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-016-0022-7

Keywords

Navigation