Log in

Effects of Electrically Activated Silver–Titanium Implant System Design Parameters on Time-Kill Curves Against Staphylococcus aureus

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Implant-associated infections pose serious threats to patients in terms of morbidity, mortality, and medical costs. This paper focuses on the quantitative assessment of the antimicrobial efficacy of a silver-based prophylactic system for orthopaedic implant applications. The implant system is configured to induce controlled local administration of silver ions via low intensity direct current activation (1–14 µA). We developed a broth-based in vitro testing model to evaluate the effects of important design parameters on the antimicrobial efficacy of the system over a 48-h interval. The time-kill curves obtained with various parameter levels were analyzed through a longitudinal model. Five parameters were investigated independently through one-way factorial experiments (n = 12) against Staphylococcus aureus. In phase 1 of the study, we investigated the effect of cathode material on system performance. We also determined the linear structure of the longitudinal model based on the Akaike information criterion by fitting the empirical data to multiple candidate model structures. The results show that substituting the silver cathode with titanium does not weaken the antimicrobial efficacy of the system (p = 0.9946). In phase 2, a detailed analysis with four design parameters was conducted using the silver–titanium configuration. The performance of the system was found to be independent of the electrode separation distance (p = 0.9926) and the pulsating current frequency (p = 0.9956). However, the anode surface area (p < 0.0001) and the current intensity (p < 0.0001) influenced the antimicrobial efficacy in an interactive manner. Overall, this study characterizes the in vitro antimicrobial efficacy of the proposed system and provides a reference of design parameters for future product engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lentino, J. R. (2003). Prosthetic joint infections: Bane of orthopedists, challenge for infectious disease specialists. Clinical Practice, 36, 1157–1161.

    Google Scholar 

  2. Neut, D., van Horn, J. R., van Kooten, T. G., van der Mei, H. C., & Busscher, H. J. (2003). Detection of biomaterial-associated infections in orthopaedic joint implants. Clinical Orthopaedics and Related Research, 413, 261–268.

    Article  Google Scholar 

  3. Shirwaiker, R. A., Samberg, M. E., Cohen, P. H., Wysk, R. A., & Monteiro-Riviere, N. A. (2013). Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. WIREs Nanomedicine and Nanobiotechnology, 5, 191–204.

    Article  Google Scholar 

  4. Smith, E. B., Wynne, R., Joshi, A., Liu, H., & Good, R. P. (2012). Is it time to include vancomycin for routine perioperative antibiotic prophylaxis in total joint arthroplasty patients? Journal of Arthroplasty, 27, 55–60.

    Article  Google Scholar 

  5. Bini, S. A., Sidney, S., & Sorel, M. (2011). Slowing demand for total joint arthroplasty in a population of 3.2 million. Journal of Arthroplasty, 26, 124–128.

    Article  Google Scholar 

  6. Darouiche, R. O. (2003). Antimicrobial approaches for preventing infections associated with surgical implants. Clinical Infectious Diseases, 36, 1284–1289.

    Article  Google Scholar 

  7. Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine, 5, 452–456.

    Google Scholar 

  8. Loh, J. V., Percival, S. L., Woods, E. J., Williams, N. J., & Cochrane, C. A. (2009). Silver resistance in MRSA isolated from wound and nasal sources in humans and animals. International Wound Journal, 6, 32–38.

    Article  Google Scholar 

  9. Strohal, R., Schelling, M., Takacs, M., Jurecka, W., Gruber, U., & Offner, F. (2005). Nanocrystalline silver dressings as an efficient anti-MRSA barrier: A new solution to an increasing problem. Journal of Hospital Infection, 60, 226–230.

    Article  Google Scholar 

  10. Jones, S. A., Bowler, P. G., Walker, M., & Parsons, D. (2004). Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair and Regeneration, 12, 288–294.

    Article  Google Scholar 

  11. Pollini, M., Paladini, F., Catalano, M., Taurino, A., Licciulli, A., Maffezzoli, A., & Sannino, A. (2011). Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. Journal of Materials Science Materials in Medicine, 22, 2005–2012.

    Article  Google Scholar 

  12. Masse, A., Bruno, A., Bosetti, M., Biasibetti, A., Cannas, M., & Gallinaro, P. (2000). Prevention of pin track infection in external fixation with silver coated pins: Clinical and microbiological results. Journal of Biomedical Materials Research, 53, 600–604.

    Article  Google Scholar 

  13. Implantcast GmbH. (2011). MUTARS® (Modular Universal Tumor And Revision System). http://www.implantcast.info/index.php?option=com_content&view=category&layout=blog&id=1&Itemid=57&lang=en.

  14. Hardes, J., Von Eiff, C., Streitbuerger, A., Balke, M., Budny, T., Henrichs, M., & Hauschild, G. (2010). Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. European Journal of Surgical Oncology, 101, 389–395.

    Google Scholar 

  15. Chen, W., Liu, Y., Courtney, H. S., Bettenga, M., Agrawal, C. M., Bumgardner, J. D., & Ong, J. (2006). In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 27, 5512–5517.

    Article  Google Scholar 

  16. Chen, X., & Schluesener, H. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176, 1–12.

    Article  Google Scholar 

  17. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research Part A, 52, 662–668.

    Article  Google Scholar 

  18. Holt, K. B., & Bard, A. J. (2005). Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 44, 13214–13223.

    Article  Google Scholar 

  19. Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environment Microbiology, 74, 2171–2178.

    Article  Google Scholar 

  20. Zhang, H., Wu, M., & Sen, A. (2012). Silver nanoparticle antimicrobials and related materials. In N. Cioffi & M. Rai (Eds.), Nano-antimicrobials: Progress and prospects (pp. 3–45). New York: Springer.

    Chapter  Google Scholar 

  21. Ip, M., Lui, S. L., Poon, V. K. M., Lung, I., & Burd, A. (2006). Antimicrobial activities of silver dressings: An in vitro comparison. Journal of Medical Microbiology, 55, 59–63.

    Article  Google Scholar 

  22. Castellano, J. J., Shafii, S. M., Ko, F., Donate, G., Wright, T. E., Mannari, R. J., et al. (2007). Comparative evaluation of silver-containing antimicrobial dressings and drugs. International Wound Journal, 4, 114–122.

    Article  Google Scholar 

  23. Darouiche, R. O. (1999). Anti-infective efficacy of silver-coated medical prostheses. Clinical Infectious Diseases, 29, 1371–1377.

    Article  Google Scholar 

  24. Spadaro, J. A., Berger, T. J., Barranco, S. D., Chapin, S. E., & Becker, R. O. (1974). Antibacterial effects of silver electrodes with weak direct current. Antimicrobial Agents and Chemotherapy, 6, 637–642.

    Article  Google Scholar 

  25. Berger, T. J., Spadaro, J. A., Chapin, S. E., & Becker, R. O. (1976). Electrically generated silver ions: Quantitative effects on bacterial and mammalian cells. Antimicrobial Agents and Chemotherapy, 9, 357–358.

    Article  Google Scholar 

  26. Fuller, T. A., Wysk, R. A., Charumani, C., Kennett, M., Sebastiennelli, W. J., Abrahams, R., et al. (2010). Develo** an engineered antimicrobial/prophylactic system using electrically activated bactericidal metals. Journal of Materials Science Materials in Medicine, 21, 2103–2114.

    Article  Google Scholar 

  27. Shirwaiker, R. A., Wysk, R. A., Kariyawasam, S., Carrion, H., & Voigt, R. C. (2011). Micro-scale fabrication and characterization of a silver-polymer-based electrically activated antibacterial surface. Biofabrication, 3, 015003.

    Article  Google Scholar 

  28. Samberg, M. E., Tan, Z., Monteiro-Riviere, N. A., Orndorff, P. E., & Shirwaiker, R. A. (2013). Biocompatibility analysis of an electrically-activated silver-based antibacterial surface system for medical device applications. Journal of Materials Science Materials in Medicine, 24, 755–760.

    Article  Google Scholar 

  29. Chakravarti, A., Gangodawila, S., Long, M. J., Morris, N. S., Blacklock, A. R. E., & Stickler, D. J. (2005). An electrified catheter to resist encrustation by Proteus mirabilis biofilm. Journal of Urology, 174, 1129–1132.

    Article  Google Scholar 

  30. Wysk, R. A., Sebastianelli, W. J., Shirwaiker, R. A., Bailey, G. M., Charumani, C., Kennett, M., et al. (2010). Prophylactic bactericidal orthopedic implants—Animal testing study. Journal of Biomedical Science and Engineering, 3, 917–926.

    Article  Google Scholar 

  31. Atiyeh, B., Costagliola, M., Hayek, S., & Dibo, S. (2006). Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 33, 139–148.

    Article  Google Scholar 

  32. Drake, P. L., & Hazelwood, K. J. (2005). Exposure-related health effects of silver and silver compounds: A review. Annals of Occupational Hygiene, 49, 575–585.

    Article  Google Scholar 

  33. AshaRani, P., Mun, G., Hande, M., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290.

    Article  Google Scholar 

  34. Arora, S., Jain, J., Rajwade, J., & Paknikar, K. (2008). Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, 179, 93–100.

    Article  Google Scholar 

  35. Braydich-Stolle, L., Hussain, S., Schlager, J., & Hofmann, M. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88, 412–419.

    Article  Google Scholar 

  36. Becker, R. O., & Spadaro, J. A. (1978). Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report. Journal of Bone and Joint Surgery, American, 60, 871.

    Google Scholar 

  37. Webster, D. A., Spadaro, J. A., Becker, R. O., & Kramer, S. (1981). Silver anode treatment of chronic osteomyelitis. Clinical Orthopaedics and Related Research, 161, 105–114.

    Google Scholar 

  38. Rai, M., Yadav, A., & Gade, A. (2008). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  Google Scholar 

  39. Gosheger, G., Von Eiff, C., Hardes, J., Ahrens, H., Streitburger, A., & Buerger, H. (2004). Silver-coated megaendoprostheses in a rabbit model—An analysis of the infection rate and toxicological side effects. Biomaterials, 25, 5547–5556.

    Article  Google Scholar 

  40. Albrektsson, T., & Johansson, C. (2001). Osteoinduction, osteoconduction and osseointegration. European Spine Journal, Suppl. 2, S96–S101.

    Google Scholar 

  41. Carlsson, L., Röstlund, T., Albrektsson, B., Albrektsson, T., & Brånemark, P. (1986). Osseointegration of titanium implants. Acta Orthopaedica Scandinavica, 57, 285.

    Article  Google Scholar 

  42. Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23, 844–854.

    Article  Google Scholar 

  43. Tsvetkov, V. V. (1995). Corrosion-resistant titanium alloys. Pharmaceutical Chemistry Journal, 29, 564–566.

    Article  Google Scholar 

  44. Trampuz, A., & Zimmerli, W. (2006). Antimicrobial agents in orthopaedic surgery: Prophylaxis and treatment. Drugs, 66, 1089.

    Article  Google Scholar 

  45. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  MathSciNet  MATH  Google Scholar 

  46. Bosetti, M., Massè, A., Tobin, E., & Cannas, M. (2002). Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 23, 887–892.

    Article  Google Scholar 

  47. Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., et al. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25, 4383–4391.

    Article  Google Scholar 

  48. Das, K., Bose, S., Bandyopadhyay, A., Karandikar, B., & Gibbins, B. L. (2008). Implants, surface coatings for improvement of bone cell materials and antimicrobial activities of Ti. Journal of Biomedical Materials Research Part B, 87, 455–460.

    Article  Google Scholar 

  49. Giglio, E. D., Cafagna, D., Cometa, S., Allegretta, A., Pedico, A., Giannossa, L. C., et al. (2013). An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: Development and analytical characterization. Analytical and Bioanalytical Chemistry, 405, 805–816.

    Article  Google Scholar 

  50. Tan, Z., Ganapathy, A., Orndorff, P. E., & Shirwaiker, R. A. (2015). Effects of cathode design parameters on in vitro antimicrobial efficacy of electrically-activated silver-based iontophoretic system. Journal of Materials Science Materials in Medicine, 26, 5382.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from NC State’s 2013 Research and Innovation and Seed Funding (RISF) program. The authors thank Ms. Patty Spears and Ms. Mitsu Suyemoto from NC State University’s College of Veterinary Medicine for their valuable and constructive suggestions during the antimicrobial efficacy testing experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan A. Shirwaiker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Xu, G., Orndorff, P.E. et al. Effects of Electrically Activated Silver–Titanium Implant System Design Parameters on Time-Kill Curves Against Staphylococcus aureus . J. Med. Biol. Eng. 36, 325–333 (2016). https://doi.org/10.1007/s40846-016-0136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0136-x

Keywords

Navigation