Log in

Direct Z-scheme photocatalytic nitrogen reduction to ammonia with water in metal-free BC4N/aza-CMP heterobilayer

具有直接Z型光催化机制的非金属BC4N/aza-CMP异质双层的光催化固氮性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Photocatalytic ammonia (NH3) synthesis from air and water without external energy input or sacrificial agents is an attractive approach for nitrogen fixation. However, finding a suitable photocatalyst with strong optical absorption, efficient photogenerated carrier separation, and adequate driving force (potentials of photoinduced carriers) to trigger the nitrogen reduction reactions (NRRs) and oxygen evolution reactions (OERs) simultaneously is challenging. Herein, we propose a direct Z-scheme photocatalytic system based on a two-dimensional metal-free BC4N/aza-CMP heterobilayer. The results of density functional theory and time-dependent ab initio nonadiabatic molecular dynamics reveal that the photoexcited carriers in the BC4N/aza-CMP heterobilayer follow a Z-scheme migration route, leading to the efficient charge carrier separation and spatially separated reaction sites for NRR (BC4N layer) and OER (aza-CMP layer). Moreover, the appropriate band gaps and energy levels of the BC4N/aza-CMP heterobilayer enable efficient solar energy capture and provide sufficient driving force (1.01 V for NRR and 2.11 V for OER) to initiate the redox reactions. Additionally, the activation of the N≡N bond by B atoms in the BC4N layer promotes the sequential hydrogenation of N atoms and reduces the overpotential of NRR. Consequently, the NRR and OER can proceed spontaneously, driven by photogenerated carriers with no need for sacrificial agents. The predicted maximum value of solar-to-chemical efficiency is 7.59%. This work will be an important reference for the rational design of direct Z-scheme photocatalysts for NRR and promote the development of solar-driven NH3 synthesis.

摘要

我们设计了一种不含金属的二维双层异质结构BC4N/aza-CMP, 该体系可在水溶液中将N2分子通过光催化作用还原为氨. 通过密度泛函理论和非绝热分子动力学方法, 我们发现该异质结构中的光生载流子遵循直接Z型迁移机制. 这将有效分离光生电荷并使氮还原反应和氧发生反应分别在BC4N层和aza-CMP层上进行, 实现反应位点的空间分离. 值得一提的是, BC4N上的B原子可以有效吸附N2分子并激活N≡N键, 这将降低氮还原反应的过电势并促进随后的质子化进程, 且该异质双层具有适宜的带隙和带边位置, 能够有效吸收太阳光并提供充足的驱动力来触发氧化还原反应, 实现无任何牺牲剂辅助的光催化氨合成. 本工作将为直接Z型固氮光催化剂的设计提供重要借鉴, 并促进太阳能驱动的氨合成的发展.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Čorić I, Mercado BQ, Bill E, et al. Binding of dinitrogen to an iron–sulfur–carbon site. Nature, 2015, 526: 96–99

    Article  Google Scholar 

  2. Qing G, Ghazfar R, Jackowski ST, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev, 2020, 120: 5437–5516

    Article  CAS  Google Scholar 

  3. Chen Z, Liu C, Sun L, et al. Progress of experimental and computational catalyst design for electrochemical nitrogen fixation. ACS Catal, 2022, 12: 8936–8975

    Article  CAS  Google Scholar 

  4. Ghoshal S, Ghosh A, Roy P, et al. Recent progress in computational design of single-atom/cluster catalysts for electrochemical and solar-driven N2 fixation. ACS Catal, 2022, 12: 15541–15575

    Article  CAS  Google Scholar 

  5. Meng SL, Li XB, Tung CH, et al. Nitrogenase inspired artificial photosynthetic nitrogen fixation. Chem, 2021, 7: 1431–1450

    Article  CAS  Google Scholar 

  6. Chen S, Liu D, Peng T. Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors. Sol RRL, 2020, 5: 2000487

    Article  Google Scholar 

  7. Wang L, Wu W, Liang K, et al. Advanced strategies for improving the photocatalytic nitrogen fixation performance: A short review. Energy Fuels, 2022, 36: 11278–11291

    Article  CAS  Google Scholar 

  8. Schrauzer GN, Guth TD. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc, 1977, 99: 7189–7193

    Article  CAS  Google Scholar 

  9. Lashgari M, Zeinalkhani P. Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon. Appl Catal A-Gen, 2017, 529: 91–97

    Article  CAS  Google Scholar 

  10. Liu Y, Cheng M, He Z, et al. Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew Chem Int Ed, 2019, 58: 731–735

    Article  CAS  Google Scholar 

  11. Liang C, Niu HY, Guo H, et al. Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem Eng J, 2021, 406: 126868

    Article  CAS  Google Scholar 

  12. Li H, Shang J, Ai Z, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J Am Chem Soc, 2015, 137: 6393–6399

    Article  CAS  Google Scholar 

  13. Li X, Wang W, Jiang D, et al. Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids. Chem Eur J, 2016, 22: 13819–13822

    Article  CAS  Google Scholar 

  14. Fang Y, Xue Y, Hui L, et al. Graphdiyne@Janus magnetite for photocatalytic nitrogen fixation. Angew Chem Int Ed, 2021, 60: 3170–3174

    Article  CAS  Google Scholar 

  15. Ran Y, Yu X, Liu J, et al. Polymeric carbon nitride with frustrated Lewis pair sites for enhanced photofixation of nitrogen. J Mater Chem A, 2020, 8: 13292–13298

    Article  CAS  Google Scholar 

  16. Hu K, Huang Z, Zeng L, et al. Recent advances in MOF-based materials for photocatalytic nitrogen fixation. Eur J Inorg Chem, 2022, 2022(3): e202101092

    Article  Google Scholar 

  17. Wang Z, Hu X, Liu Z, et al. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal, 2019, 9: 10260–10278

    Article  CAS  Google Scholar 

  18. Chen X, Li JY, Tang ZR, et al. Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks. Catal Sci Technol, 2020, 10: 6098–6110

    Article  CAS  Google Scholar 

  19. Zhang S, Zhao Y, Shi R, et al. Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem, 2019, 1: 100013

    Article  Google Scholar 

  20. Fan Y, Wang J, Zhao M. Spontaneous full photocatalytic water splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 vdW heterostructures. Nanoscale, 2019, 11: 14836–14843

    Article  CAS  Google Scholar 

  21. Fan Y, Qi S, Li W, et al. Direct Z-scheme photocatalytic CO2 conversion to solar fuels in a two-dimensional C2N/aza-CMP heterostructure. Appl Surf Sci, 2021, 541: 148630

    Article  CAS  Google Scholar 

  22. Wang Y, Wei W, Li M, et al. In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N2 photofixation ability under visible light. RSC Adv, 2017, 7: 18099–18107

    Article  CAS  Google Scholar 

  23. Liang H, Zou H, Hu S. Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New J Chem, 2017, 41: 8920–8926

    Article  CAS  Google Scholar 

  24. Duan R, Zhong J, Li J. Direct Z-scheme charge separation mechanism and photocatalytic properties of (BiO)2CO3–BiOCl composites prepared in-situ. Chem Phys, 2020, 530: 110597

    Article  CAS  Google Scholar 

  25. Ding Z, Wang S, Chang X, et al. Nano-MOF@defected film C3N4 Z-scheme composite for visible-light photocatalytic nitrogen fixation. RSC Adv, 2020, 10: 26246–26255

    Article  CAS  Google Scholar 

  26. Nguyen VH, Mousavi M, Ghasemi JB, et al. High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/carbon dots heterojunction with efficient activity in photocatalytic NH3 production. J Taiwan Institute Chem Engineers, 2021, 118: 140–151

    Article  CAS  Google Scholar 

  27. **a S, Zhang G, Gao Z, et al. 3D hollow Bi2O3@CoAl-LDHs direct Z-scheme heterostructure for visible-light-driven photocatalytic ammonia synthesis. J Colloid Interface Sci, 2021, 604: 798–809

    Article  CAS  Google Scholar 

  28. Nong W, Liang H, Qin S, et al. Computational design of two-dimensional boron-containing compounds as efficient metal-free electrocatalysts toward nitrogen reduction independent of heteroatom do**. ACS Appl Mater Interfaces, 2020, 12: 50505–50515

    Article  CAS  Google Scholar 

  29. Wang L, Wan Y, Ding Y, et al. Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: A combined first-principles calculation and experimental study. Nanoscale, 2017, 9: 4090–4096

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  32. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  34. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215

    Article  CAS  Google Scholar 

  35. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 2006, 27: 1787–1799

    Article  CAS  Google Scholar 

  36. Mathew K, Sundararaman R, Letchworth-Weaver K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys, 2014, 140: 084106

    Article  Google Scholar 

  37. Letchworth-Weaver K, Arias TA. Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys Rev B, 2012, 86: 075140

    Article  Google Scholar 

  38. Zhang Q, Asthagiri A. Solvation effects on DFT predictions of ORR activity on metal surfaces. Catal Today, 2019, 323: 35–43

    Article  CAS  Google Scholar 

  39. Garza AJ, Bell AT, Head-Gordon M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal, 2018, 8: 1490–1499

    Article  CAS  Google Scholar 

  40. Zheng Q, Chu W, Zhao C, et al. Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems. WIREs Comput Mol Sci, 2019, 9: e1411

    Article  CAS  Google Scholar 

  41. Jaeger HM, Fischer S, Prezhdo OV. Decoherence-induced surface hop**. J Chem Phys, 2012, 137: 22A545

    Article  Google Scholar 

  42. Craig CF, Duncan WR, Prezhdo OV. Trajectory surface hop** in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Phys Rev Lett, 2005, 95: 163001

    Article  Google Scholar 

  43. Tully JC. Molecular dynamics with electronic transitions. J Chem Phys, 1990, 93: 1061–1071

    Article  CAS  Google Scholar 

  44. Rossmeisl J, Qu ZW, Zhu H, et al. Electrolysis of water on oxide surfaces. J Electroanal Chem, 2007, 607: 83–89

    Article  CAS  Google Scholar 

  45. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B, 2004, 108: 17886–17892

    Article  Google Scholar 

  46. Fan Y, Song X, Ma X, et al. Rational design of black phosphorus-based direct Z-scheme photocatalysts for overall water splitting: The role of defects. J Phys Chem Lett, 2022, 13: 9363–9371

    Article  CAS  Google Scholar 

  47. Fan Y, Yu J, Song X, et al. The role of sp-hybridized boron atoms in the highly efficient photocatalytic N2 reduction activity of boron-doped triphenylene-graphdiyne. J Mater Chem A, 2021, 9: 26077–26085

    Article  CAS  Google Scholar 

  48. Wang L, Zheng X, Chen L, et al. Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew Chem Int Ed, 2018, 57: 3454–3458

    Article  CAS  Google Scholar 

  49. Niu X, Bai X, Zhou Z, et al. Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catal, 2020, 10: 1976–1983

    Article  CAS  Google Scholar 

  50. Fan Y, Song X, Ai H, et al. Highly efficient photocatalytic CO2 reduction in two-dimensional ferroelectric CuInP2S6 bilayers. ACS Appl Mater Interfaces, 2021, 13: 34486–34494

    Article  CAS  Google Scholar 

  51. Jiang X, Wang P, Zhao J. 2D covalent triazine framework: A new class of organic photocatalyst for water splitting. J Mater Chem A, 2015, 3: 7750–7758

    Article  CAS  Google Scholar 

  52. Légaré MA, Bélanger-Chabot G, Dewhurst RD, et al. Nitrogen fixation and reduction at boron. Science, 2018, 359: 896–900

    Article  Google Scholar 

  53. Ling C, Niu X, Li Q, et al. Metal-free single atom catalyst for N2 fixation driven by visible light. J Am Chem Soc, 2018, 140: 14161–14168

    Article  CAS  Google Scholar 

  54. Lv X, Wei W, Li F, et al. Metal-free B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett, 2019, 19: 6391–6399

    Article  CAS  Google Scholar 

  55. Wang S, Shi L, Bai X, et al. Highly efficient photo-/electrocatalytic reduction of nitrogen into ammonia by dual-metal sites. ACS Cent Sci, 2020, 6: 1762–1771

    Article  CAS  Google Scholar 

  56. Guo X, Gu J, Lin S, et al. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J Am Chem Soc, 2020, 142: 5709–5721

    Article  CAS  Google Scholar 

  57. Zhang J, Zhao Y, Wang Z, et al. Boron-decorated C9N4 monolayers as promising metal-free catalysts for electrocatalytic nitrogen reduction reaction: A first-principles study. New J Chem, 2020, 44: 422–427

    Article  CAS  Google Scholar 

  58. Dong G, Ho W, Wang C. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J Mater Chem A, 2015, 3: 23435–23441

    Article  CAS  Google Scholar 

  59. Zhang Y, Du H, Ma Y, et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res, 2019, 12: 919–924

    Article  CAS  Google Scholar 

  60. Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J Am Chem Soc, 2017, 139: 12480–12487

    Article  CAS  Google Scholar 

  61. Wang W, Zhou H, Liu Y, et al. Formation of B–N–C coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance. Small, 2020, 16: e1906880

    Article  Google Scholar 

  62. Liang H, Tian F, Zeng Z, et al. Two-dimensional metal-free compounds of BC4N and BC6N2 with boron atoms as highly efficient catalytic centers toward sulfur redox in lithium-sulfur batteries. Appl Surf Sci, 2022, 606: 154773

    Article  CAS  Google Scholar 

  63. Niu H, Wang X, Shao C, et al. Computational screening single-atom catalysts supported on g-CN for N2 reduction: High activity and selectivity. ACS Sustain Chem Eng, 2020, 8: 13749–13758

    Article  CAS  Google Scholar 

  64. Fu CF, Sun J, Luo Q, et al. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett, 2018, 18: 6312–6317

    Article  CAS  Google Scholar 

  65. Fan Y, Song X, Qi S, et al. Li-III-VI bilayers for efficient photocatalytic overall water splitting: The role of intrinsic electric field. J Mater Chem A, 2019, 7: 26123–26130

    Article  CAS  Google Scholar 

  66. Fan Y, Ma X, Wang J, et al. Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers: The roles of intrinsic electric filed and vacancy defects. Sci Bull, 2019, 65: 27–34

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21833004), Taishan Scholar Program of Shandong Province, and the Natural Science Foundation of Shandong Province (ZR2020QA055).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Fan Y performed DFT calculations and contributed to the data analysis and writing of the manuscript. Zhang Z, Wang J and Ma X contributed to the data interpretation. Zhao M designed the study and contributed to the data interpretation and writing of the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yingcai Fan  (范英才) or Mingwen Zhao  (赵明文).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Yingcai Fan received his BSc (2007), MSc (2011) and PhD (2021) degrees in physics from Shandong University. He is currently working at the School of Information and Electronic Engineering, Shandong Technology and Business University. His research mainly focuses on photocatalytic properties of 2D materials by first-principles calculations and nonadiabatic molecular dynamics method.

Mingwen Zhao received his PhD degree in 2001 from Shandong University. He is currently a professor of the School of Physics, Shandong University. His research interests are focused on the theoretical design of electronic structures of nanomaterials based on first principles, which are closely related to applications in spintronics devices and energy generation.

Supplementary information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Zhang, Z., Wang, J. et al. Direct Z-scheme photocatalytic nitrogen reduction to ammonia with water in metal-free BC4N/aza-CMP heterobilayer. Sci. China Mater. 66, 4377–4386 (2023). https://doi.org/10.1007/s40843-023-2587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2587-7

Keywords

Navigation