Log in

Development of flame-retardant ion-gel electrolytes for safe and flexible supercapacitors

基于阻燃离子凝胶电解质的高安全性柔性超级电容器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The presence of organic electrolytes in typical liquid supercapacitors ultimately results in inadequate safety and poor flexibility, which limits the development and application of supercapacitors. Thus, we developed an easy-to-prepare ion-gel supercapacitor with strong flame-retardant properties, thermal stability, flexibility, and good electrochemical characteristics. Specifically, this ion-gel supercapacitor provides excellent performance by using the in situ cross-linking of ion-gel electrolytes on electrodes. The introduction of ether-containing flexible chain segments to the ion-gel electrolyte results in a high ionic conductivity (6.5 × 10−3 S cm−1) at an ambient temperature, and the in situ cross-linking results in a tight interfacial contact between the electrolyte and electrode. The ion-gel supercapacitor retains a stable electrochemical performance while bending due to the tight interfacial contact and excellent mechanical characteristics. Furthermore, incorporating the diazonaphthone structure in the cross-linked electrolyte renders the ion-gel electrolyte excellent flame-retardant properties and thermal stability, allowing it to sustain dimensional stability at 150°C for 30 min. The supercapacitor with the optimized ion-gel electrolyte has a specific capacity of 105 F g−1 and an energy density of 41.6 W h kg−1. The results of this study provide a practical method for preparing and optimizing ion-gel cross-linked electrolytes.

摘要

在传统的超级电容器中, 有机电解质的存在导致其安全性和灵活性能差, 限制了超级电容器的发展和应用. 因此, 我们开发了一种简易制备的具有**阻燃性、 热稳定性、 灵活性和电化学特性的离子凝胶超级电容器. 具体来说, 通过在电极上使用离子凝胶电解质的原位交联, 获得了具有优良性能的离子凝胶超级电容器. 在离子凝胶电解质中引入大量含醚的柔性链段后, 其室温电导率可以高达6.5 × 10−3 S cm−1. 同时, 原位交联的制备方法使电解质和电极之间具有紧密的界面接触. 由于该离子凝胶电解质具有紧密的电极/电解质界面接触和良好的机械特性, 使其在弯曲时保持了稳定的电化学性能. 此外, 在交联的电解质中加入二氮杂萘结构为离子凝胶电解质提供了良好的阻燃性和热稳定性, 使其能够在150°C下保持30分钟的尺寸稳定性. 使用离子凝胶电解质制备的超级电容器的比容量为105 F g−1, 能量密度为41.6 W h kg−1. 这项工作为制备和优化离子凝胶交联电解质提供了一种实用方法和新的见解.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai K, Zheng Y, Wei W. Organoboron-containing polymer electrolytes for high-performance lithium batteries. Adv Funct Mater, 2021, 31: 2008632

    Article  CAS  Google Scholar 

  2. Li J, Qiao J, Lian K. Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: A review. Energy Storage Mater, 2020, 24: 6–21

    Article  CAS  Google Scholar 

  3. Nan J, Zhang G, Zhu T, et al. A highly elastic and fatigue-resistant natural protein-reinforced hydrogel electrolyte for reversible-compressible quasi-solid-state supercapacitors. Adv Sci, 2020, 7: 2000587

    Article  CAS  Google Scholar 

  4. Yang W, Li L, Zhang B, et al. Optimization and preparation of a gel polymer electrolyte membrane for supercapacitors. Chem Eng Technol, 2021, 44: 449–456

    Article  CAS  Google Scholar 

  5. Ren B, Cui H, Wang C. Self-supported graphene nanosheet-based composites as binder-free electrodes for advanced electrochemical energy conversion and storage. Electrochem Energy Rev, 2022, 5: 32

    Article  CAS  Google Scholar 

  6. Lee H, Jung G, Keum K, et al. A textile-based temperature-tolerant stretchable supercapacitor for wearable electronics. Adv Funct Mater, 2021, 31: 2106491

    Article  CAS  Google Scholar 

  7. Wang DG, Liang Z, Gao S, et al. Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev, 2020, 404: 213093

    Article  CAS  Google Scholar 

  8. He X, Wu D, Shang Y, et al. Regenerated hydrogel electrolyte towards an all-gel supercapacitor. Sci China Mater, 2022, 65: 115–123

    Article  CAS  Google Scholar 

  9. Zhang Q, Hou X, Liu X, et al. Nucleotide-tackified organohydrogel electrolyte for environmentally self-adaptive flexible supercapacitor with robust electrolyte/electrode interface. Small, 2021, 17: 2103091

    Article  CAS  Google Scholar 

  10. Chen Z, Yang Y, Ma Z, et al. All-solid-state asymmetric supercapacitors with metal selenides electrodes and ionic conductive composites electrolytes. Adv Funct Mater, 2019, 29: 1904182

    Article  Google Scholar 

  11. Kumaravel V, Bartlett J, Pillai SC. Solid electrolytes for high-temperature stable batteries and supercapacitors. Adv Energy Mater, 2021, 11: 2002869

    Article  CAS  Google Scholar 

  12. Yu S, Ling Y, Sun S, et al. Flexible self-charging lithium battery for storing low-frequency mechanical energy. Nano Energy, 2022, 94: 106911

    Article  CAS  Google Scholar 

  13. Liu T, Yan R, Huang H, et al. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv Funct Mater, 2020, 30: 2004410

    Article  CAS  Google Scholar 

  14. Zheng X, Hu M, Liu Y, et al. High-resolution flexible electronic devices by electrohydrodynamic jet printing: From materials toward applications. Sci China Mater, 2022, 65: 2089–2109

    Article  Google Scholar 

  15. Jayaraman S, Rawson TJ, Belyustina MA. Designing supercapacitor electrolyte via ion counting. Energy Environ Sci, 2022, 15: 2948–2957

    Article  CAS  Google Scholar 

  16. Wang P, Meng Z, Wang X, et al. Double-core–shell polysaccharide polymer networks for highly flexible, safe, and durable supercapacitors. J Mater Chem A, 2022, 10: 8948–8957

    Article  CAS  Google Scholar 

  17. Kang W, Zeng L, Liu X, et al. Insight into cellulose nanosizing for advanced electrochemical energy storage and conversion: A review. Electrochem Energy Rev, 2022, 5: 8

    Article  CAS  Google Scholar 

  18. Wang R, Yao M, Huang S, et al. An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries. Sci China Mater, 2022, 65: 2189–2196

    Article  CAS  Google Scholar 

  19. Chen C, Cao J, Lu Q, et al. Foldable all-solid-state supercapacitors integrated with photodetectors. Adv Funct Mater, 2017, 27: 1604639

    Article  Google Scholar 

  20. McOwen DW, Xu S, Gong Y, et al. 3D-printing electrolytes for solidstate batteries. Adv Mater, 2018, 30: 1707132

    Article  Google Scholar 

  21. Luo C, Ji X, Chen J, et al. Solid-state electrolyte anchored with a carboxylated azo compound for all-solid-state lithium batteries. Angew Chem Int Ed, 2018, 57: 8567–8571

    Article  CAS  Google Scholar 

  22. Luo X, Chen S, Hu T, et al. Renewable biomass-derived carbons for electrochemical capacitor applications. SusMat, 2021, 1: 211–240

    Article  CAS  Google Scholar 

  23. Guo T, Zhou D, Liu W, et al. Recent advances in all-in-one flexible supercapacitors. Sci China Mater, 2021, 64: 27–45

    Article  CAS  Google Scholar 

  24. Fu D, Sun Y, Zhang F, et al. Enabling polymeric ionic liquid electrolytes with high ambient ionic conductivity by polymer chain regulation. Chem Eng J, 2022, 431: 133278

    Article  CAS  Google Scholar 

  25. Sheng O, ** C, Luo J, et al. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. J Mater Chem A, 2017, 5: 12934–12942

    Article  CAS  Google Scholar 

  26. Cao C, Li Y, Feng Y, et al. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater, 2019, 19: 401–407

    Article  Google Scholar 

  27. Bae J, Li Y, Zhao F, et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater, 2018, 15: 46–52

    Article  Google Scholar 

  28. Zhu T, Ni Y, Biesold GM, et al. Recent advances in conductive hydrogels: Classifications, properties, and applications. Chem Soc Rev, 2023, 52: 473–509

    Article  CAS  Google Scholar 

  29. Cho YG, Hwang C, Cheong DS, et al. Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv Mater, 2019, 31: 1804909

    Article  Google Scholar 

  30. Dai H, Zhang G, Rawach D, et al. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater, 2021, 34: 320–355

    Article  Google Scholar 

  31. Liu M, Zhou D, He YB, et al. Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy, 2016, 22: 278–289

    Article  CAS  Google Scholar 

  32. Fu C, Iacob M, Sheima Y, et al. A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries. J Mater Chem A, 2021, 9: 11794–11801

    Article  Google Scholar 

  33. Yin L, Li S, Liu X, et al. Ionic liquid electrolytes in electric double layer capacitors. Sci China Mater, 2019, 62: 1537–1555

    Article  CAS  Google Scholar 

  34. Qin H, Liu P, Chen C, et al. A multi-responsive healable supercapacitor. Nat Commun, 2021, 12: 4297

    Article  CAS  Google Scholar 

  35. Jabbari V, Yurkiv V, Rasul MG, et al. An efficient gel polymer electrolyte for dendrite-free and long cycle life lithium metal batteries. Energy Storage Mater, 2022, 46: 352–365

    Article  Google Scholar 

  36. Chen F, Guo C, Zhou H, et al. Supramolecular network structured gel polymer electrolyte with high ionic conductivity for lithium metal batteries. Small, 2022, 18: 2106352

    Article  CAS  Google Scholar 

  37. Yu D, Li X, Xu J. Safety regulation of gel electrolytes in electrochemical energy storage devices. Sci China Mater, 2019, 62: 1556–1573

    Article  CAS  Google Scholar 

  38. Li C, Xue P, Chen L, et al. Reducing the crystallinity of PEO-based composite electrolyte for high performance lithium batteries. Compos Part B-Eng, 2022, 234: 109729

    Article  CAS  Google Scholar 

  39. Atik J, Diddens D, Thienenkamp JH, et al. Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes. Angew Chem Int Ed, 2021, 60: 11919–11927

    Article  CAS  Google Scholar 

  40. Liu Y, Zhao Y, Lu W, et al. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy, 2021, 88: 106205

    Article  CAS  Google Scholar 

  41. Sun C, Wang Z, Yin L, et al. Fast lithium ion transport in solid polymer electrolytes from polysulfide-bridged copolymers. Nano Energy, 2020, 75: 104976

    Article  CAS  Google Scholar 

  42. Fan W, Li NW, Zhang X, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv Sci, 2018, 5: 1800559

    Article  Google Scholar 

  43. Liang L, Yuan W, Chen X, et al. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasisolid electrolyte for high performance lithium-ion batteries. Chem Eng J, 2021, 421: 130000

    Article  CAS  Google Scholar 

  44. Wang J, O’Connor TC, Grest GS, et al. Superstretchable elastomer from cross-linked ring polymers. Phys Rev Lett, 2022, 128: 237801

    Article  CAS  Google Scholar 

  45. Li N, Zong L, Wu Z, et al. Effect of poly(phthalazinone ether ketone) with amino groups on the interfacial performance of carbon fibers reinforced PPBES resin. Compos Sci Tech, 2017, 149: 178–184

    Article  CAS  Google Scholar 

  46. Lee D, Song Y, Song Y, et al. Multi-foldable and environmentally stable all-solid-state supercapacitor based on hierarchical nano-canyon structured ionic-gel polymer electrolyte. Adv Funct Mater, 2022, 32: 2109907

    Article  CAS  Google Scholar 

  47. Yu Z, Balsara NP, Borodin O, et al. Beyond local solvation structure: Nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS Energy Lett, 2022, 7: 461–470

    Article  CAS  Google Scholar 

  48. Muchakayala R, Song S, Wang J, et al. Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films. J Industrial Eng Chem, 2018, 59: 79–89

    Article  CAS  Google Scholar 

  49. Xu J, ** R, Ren X, et al. A wide temperature-tolerant hydrogel electrolyte mediated by phosphoric acid towards flexible supercapacitors. Chem Eng J, 2021, 413: 127446

    Article  CAS  Google Scholar 

  50. Lin T, Shi M, Huang F, et al. One-pot synthesis of a double-network hydrogel electrolyte with extraordinarily excellent mechanical properties for a highly compressible and bendable flexible supercapacitor. ACS Appl Mater Interfaces, 2018, 10: 29684–29693

    Article  CAS  Google Scholar 

  51. Chaudoy V, Tran Van F, Deschamps M, et al. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. J Power Sources, 2017, 342: 872–878

    Article  CAS  Google Scholar 

  52. Huo P, Liu Y, Na R, et al. Quaternary ammonium functionalized poly(arylene ether sulfone)/poly(vinylpyrrolidone) composite membranes for electrical double-layer capacitors with activated carbon electrodes. J Membrane Sci, 2016, 505: 148–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Outstanding Youth Science Fund (52222314), China National Petroleum Corporation (CNPC) Innovation Found (2021DQ02-1001), Liao Ning Revitalization Talents Program (XLYC1907144), **nghai Talent Cultivation Plan (X20200303), and the Fundamental Research Funds for the Central Universities (DUT22JC02 and DUT22LAB605).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang Z conducted the experiments, analyzed the structure, morphology, electrical properties, and device performance, and wrote the manuscript. Wang L and Jiang W conducted the data curation. Jian X and Hu F supervised the project and revised the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to **gao Jian  (蹇锡高) or Fangyuan Hu  (胡方圆).

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Zhe Wang received her Master’s degree in 2018. She is currently pursuing her PhD degree under the supervision of Prof. ** for electrochemical energy storage.

**gao Jian received his Master’s degree from DUT in 1981, majoring in polymer science and materials. He was elected as the academician of the Chinese Academy of Engineering in 2013 and is a professor at the Department of Polymer Science & Materials, DUT. His research focuses on high-performance polymers and their applications in areas such as membranes, composites, and electrochemical energy storage.

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, L., Jiang, W. et al. Development of flame-retardant ion-gel electrolytes for safe and flexible supercapacitors. Sci. China Mater. 66, 3129–3138 (2023). https://doi.org/10.1007/s40843-023-2470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2470-3

Keywords

Navigation