Log in

A Numerical Approach Based on Modified Lucas Wavelets for Functional Variational Problems Through Integral Operational Matrix

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present work introduces an approximated numerical technique for functional variational problems (FVPs) with mixed boundary conditions which are based on the integral operational matrix (IOM) for modified Lucas wavelets. Both, its algorithm and pseudo code are discussed. In this approach, the functional variational problems are transformed into the most familiar algebraic system with the help of the integral operational matrix and the Lagrange multipliers technique. The introduced numerical approach has been tested on some experimental applications, and found that the proposed approach was more suitable for the numerical solutions of FVPs with higher accuracy. The performance of the present approach is better than the performance of existing methods and the techniques available in the literature. Hence, the modified Lucas wavelets provide an approximate solution that is very close to the exact solution of FVPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Tikhomirov, V.M.: Stories about maxima and minima. American Mathematica Society, Providence (1990)

    Google Scholar 

  2. Dym, C.L., Shames, I.H.: Solid mechanics: a variational approach. McGraw-Hill, New York (1973). https://doi.org/10.1016/S0022-460X(74)80189-6

    Book  Google Scholar 

  3. Gelfand, I.M., Fomin, S.V.: Calculus of variations. Prentice-Hall, Englewood Cliffs, NJ (1963)

    Google Scholar 

  4. Myint-U, T., Debnath, L.: Linear partial differential equations for scientists and engineers, 4th edn. Birkhauser, Boston (2007)

    Google Scholar 

  5. Schechter, R.S.: The variational method in engineering. McGraw-Hill, New York (1967). https://doi.org/10.1002/AIC.690140304

    Book  Google Scholar 

  6. Jian, H., Bangding, T., Jihui, Y., et al.: The new variational problem in three-dimensional eddy-current field computation. Commun. Numer. Methods Eng. 11, 727–733 (1995). https://doi.org/10.1002/cnm.1640110903

    Article  Google Scholar 

  7. Daubechies, I., Teschke, G.: Wavelet-based image decomposition by variational functional In wavelet applications in industrial processing. Int. Soci. Optic. Phot. 5266, 94–105 (2004). https://doi.org/10.1117/12.516051

    Article  Google Scholar 

  8. Cox, J.C., Huang, C.F.: A variational problem arising in financial economics. J. Math. Econ. 20(5), 465–487 (1991). https://doi.org/10.1016/0304-4068(91)90004-D

    Article  MathSciNet  Google Scholar 

  9. Heydari, M.H., Hooshmandasl, M.R., Ghaini, F.M., Cattani, C.: Wavelets method for solving fractional optimal control problems. Appl. Math. Comput. 286, 139–154 (2016). https://doi.org/10.1016/j.amc.2016.04.009

    Article  MathSciNet  Google Scholar 

  10. Kornaeva, E., Kornaev, A., Egorov, S.: Application of artificial neural networks to solution of variational problems in hydrodynamics. J. Phys.: Conf. Series 1553, 012005 (2020). https://doi.org/10.1088/1742-6596/1553/1/012005

    Article  Google Scholar 

  11. Khan, B. A., Chatterjee, S., Sekh, G. A., Talukdar, B.: Inverse variational problem for nonlinear dynamical systems. ar**v preprint ar**v:2008.03116(2020). https://doi.org/10.48550/ar**v.2008.03116

  12. Zhou, C. C., Liu, Y.: The pade approximant based network for variational problems. ar**v preprint ar**v:2004.00711(2020). https://doi.org/10.48550/ar**v.2004.00711

  13. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Modified wavelet method for solving fractional variational problems. J. Vibr. Contr. (2020). https://doi.org/10.1177/1077546320932025

    Article  Google Scholar 

  14. Rayal, A., Verma, S.R.: An approximate wavelets solution to the class of variational problems with fractional order. J. Appl. Math. Comput. 65, 735–769 (2020). https://doi.org/10.1007/s12190-020-01413-9

    Article  MathSciNet  Google Scholar 

  15. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: The Bernoulli wavelets operational matrix of integration and its applications for the solution of linear and nonlinear problems in calculus of variations. Appl. Math. Comput. 351, 83–98 (2019). https://doi.org/10.1016/j.amc.2018.12.032

    Article  MathSciNet  Google Scholar 

  16. Vaziri, A.M., Effati, S.: Solving fractional variational problem via an orthonormal function. Stat., Optimiz. Inform. Comput. 7(2), 447–455 (2019). https://doi.org/10.19139/soic.v7i2.502

    Article  MathSciNet  Google Scholar 

  17. Abdulaziz, O., Hashim, I., Chowdhury, M.S.H.: Solving variational problems by homotopy–perturbation method. Int. J. Numer. Meth. Eng. 75(6), 709–721 (2008). https://doi.org/10.1002/nme.2279

    Article  MathSciNet  Google Scholar 

  18. Dixit, S., Singh, V.K., Singh, A.K., Singh, O.P.: Bernstein direct method for solving variational problem. Int. Math. Forum 5(48), 2351–2370 (2010)

    MathSciNet  Google Scholar 

  19. Zarebnia, M., Aliniya, N.: Sinc-Galerkin method for the solution of problems in calculus of variations’. World academy of science, engineering and technology, open science index 56. Int. J. Math. Comput. Sci. 5(8), 1402–1407 (2011)

    Google Scholar 

  20. Russak, I.B.: Calculus of variations, Ma 4311 Lecture Notes. Monterey, California: Naval Postgraduate School. (2002).

  21. Razzaghi, M., Marzban, H.R.: Direct method for variational problems via hybrid of block-pulse and Chebyshev functions. Math. Probl. Eng. 6, 587810 (2000). https://doi.org/10.1155/S1024123X00001265

    Article  MathSciNet  Google Scholar 

  22. Chen, C.F., Hsiao, C.H.: A Walsh series direct method for solving variational problems. J. Franklin Inst. 300(4), 265–280 (1975). https://doi.org/10.1016/0016-0032(75)90199-4

    Article  MathSciNet  Google Scholar 

  23. Horng, I.R., Chou, J.H.: Shifted Chebyshev direct method for solving variational problems. Int. J. Syst. Sci. 16(7), 855–861 (1985). https://doi.org/10.1080/00207728508926718

    Article  MathSciNet  Google Scholar 

  24. Chang, R.Y., Wang, M.L.: Shifted Legendre direct method for variational problems. J. Optim. Theory Appl. 39(2), 299–307 (1983). https://doi.org/10.1007/BF00934535

    Article  MathSciNet  Google Scholar 

  25. Hwang, C., Shih, Y.P.: Laguerre operational matrices for fractional calculus and applications. Int. J. Control 34(3), 577–584 (1981). https://doi.org/10.1080/00207178108922549

    Article  MathSciNet  Google Scholar 

  26. Razzaghi, M., Razzaghi, M.: Fourier series direct method for variational problems. Int. J. Control 48(3), 887–895 (1988). https://doi.org/10.1080/00207178808906224

    Article  MathSciNet  Google Scholar 

  27. Hsiao, C.H.: Haar wavelet direct method for solving variational problems. Math. Comput. Simul. 64(5), 569–585 (2004). https://doi.org/10.1016/j.matcom.2003.11.012

    Article  MathSciNet  Google Scholar 

  28. Razzaghi, M., Yousefi, S.: Legendre wavelets direct method for variational problems. Math. Comput. Simul. 53(3), 185–192 (2000). https://doi.org/10.1016/S0378-4754(00)00170-1

    Article  MathSciNet  Google Scholar 

  29. Yousefi, S.A., Dehghan, M.: The use of He’s variational iteration method for solving variational problems. Int. J. Comput. Math. 87(6), 1299–1314 (2010). https://doi.org/10.1080/00207160802283047

    Article  MathSciNet  Google Scholar 

  30. Ordokhani, Y.: Direct walsh-hybrid method for variational problems. Int. J. Nonlin. Sci. 11(1), 114–120 (2011)

    MathSciNet  Google Scholar 

  31. Chui, C.K.: An introduction to wavelets. Academic Press, Boston (1992). https://doi.org/10.2307/2153134

    Book  Google Scholar 

  32. Hernandez, E., Weiss, G.: A first course on wavelets. CRC Press, New York (1996)

    Book  Google Scholar 

  33. Louis, A.K., Maass, D., Rider, A.: Wavelets: theory and its applications. Wiley, New York (1997)

    Google Scholar 

  34. Debnath, L.: Wavelets: transform and their applications. Birkhauser, Boston (2002)

    Book  Google Scholar 

  35. Soman, K.P., Ramachandran, K.I., Reshmi, N.G.: Insight into Wavelets: from Theory to practice, Phi LP Ltd, (2011)

  36. Qurc, O.: A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation. Comput. Math. Appl. 74(12), 3042–3057 (2017). https://doi.org/10.1016/j.camwa.2017.07.046

    Article  MathSciNet  Google Scholar 

  37. Hoggatt, V. E. and Bicknell, M. Roots of Fibonacci Polynomials. https://www.fq.math.ca/Scanned/11-3/hoggatt1.pdf.

  38. Lang, S.: Taylor’s formula. In: A first course in calculus. Undergraduate texts in mathematics. Springer, New York, NY (1986)

    Chapter  Google Scholar 

  39. Odibat, Z.M., Shawagfeh, N.T.: Generalized taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007). https://doi.org/10.1016/j.amc.2006.07.102

    Article  MathSciNet  Google Scholar 

  40. Babolian, E., Mokhtari, R., Salmani, M.: Using direct method for solving variational problems via triangular orthogonal functions. Appl. Math. Comput. 191(1), 206–217 (2007). https://doi.org/10.1016/j.amc.2007.02.080

    Article  MathSciNet  Google Scholar 

  41. Dixit, S., Pandey, S., Verma, S.R.: Application of bernstein polynomial multiwavelets for solving non linear variational problems with moving and fixed boundaries. Recent Adv. Electrical Electr. Eng. 14(4), 441–458 (2021). https://doi.org/10.2174/2352096513999201110121215

    Article  Google Scholar 

  42. Arsalani, M., Vali, M.A.: Numerical solution of nonlinear variational problems with moving boundary conditions by using Chebyshev wavelets. Appl. Math. Sci. 5(20), 947–964 (2011)

    MathSciNet  Google Scholar 

  43. Faragó, I., Havasi, Á., Zlatev, Z.: Treatment of the chemical reactions in an air pollution model. Advanced numerical methods for complex environmental models: needs and availability. 53–78, Bentham, Oak Park, (2013). https://doi.org/10.2174/9781608057788113010007

  44. Harsha, N.S.: A review of the variational methods for solving DC circuits. Eur. J. Phys. 40(3), 033001 (2019). https://doi.org/10.1088/1361-6404/ab0525

    Article  MathSciNet  Google Scholar 

  45. Kalinin, A.V., Slyunyaev, N.N.: Initial-boundary value problems for the equations of the global atmospheric electric circuit. J. Math. Anal. Appl. 450(1), 112–136 (2017). https://doi.org/10.1016/j.jmaa.2017.01.025

    Article  MathSciNet  Google Scholar 

  46. Li, H., He, Y., Bing, T.: Application of wavelet transform circuits for harmonic analysis in power systems. Recent Adv. Electr. Elect. Eng. (Former. Recent Patents Electr. Elect. Eng.) 7(2), 90–97 (2014). https://doi.org/10.2174/2213111607666140701174226

    Article  Google Scholar 

  47. Nikan, O., Golbabai, A., Machado, J.T., Nikazad, T.: Numerical approximation of the time fractional cable model arising in neuronal dynamics. Eng. Comput. 38(1), 155–173 (2022). https://doi.org/10.1007/s00366-020-01033-8

    Article  Google Scholar 

  48. Nikan, O., Jafari, H., Golbabai, A.: Numerical analysis of the fractional evolution model for heat flow in materials with memory. Alex. Eng. J. 59(4), 2627–2637 (2020). https://doi.org/10.1016/j.aej.2020.04.026

    Article  Google Scholar 

  49. Nikan, O., Molavi-Arabshai, S.M., Jafari, H.: Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S. 14(10), 3685–3701 (2021). https://doi.org/10.3934/dcdss.2020466

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their heartfelt gratitude to Dr. K. Raju, Professor, Department of Mechanical Engineering, St. Joseph Engineering College, Mangaluru, India for his timely help in editing the manuscript.

Funding

This research did not receive any specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sag Ram Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Verma, S.R. A Numerical Approach Based on Modified Lucas Wavelets for Functional Variational Problems Through Integral Operational Matrix. Int. J. Appl. Comput. Math 9, 138 (2023). https://doi.org/10.1007/s40819-023-01616-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01616-1

Keywords

Navigation