Log in

Effects of Catheter, Stenosis and Thrombosis in Non-Newtonian Blood Flow Through Narrow Arteries with Clinical Applications: A Mathematical Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This study analyses the rheological characteristics of non-Newtonian Carreau fluid model for nanoparticles suspended flow of blood through constricted arteries in the presence of stenosis, thrombosis and catheters. Analytical expressions, such as, velocity distribution, temperature, pressure gradient, wall shear stress and resistive impedance to flow are obtained by implementing the perturbation method and through the extensive use of MATLAB and MATHEMATICA programming tools, the results are presented graphically and tabularly. It is found that temperature of the fluid lessens with the increase in stenosis shape parameter and depth of stenosis which results in the reduction of flow of blood in the artery. It is discovered that a rise in Weissenberg number results in the decrease of fluid’s velocity and skin friction. The magnitude of resistance to blood flow reduces with the upsurge of flow rate and stenosis shape parameter and the reverse character is recognized when Weissenberg number, the depth and axial displacement of blood clot increases. When the angioplasty catheter of radius 0.3 is inserted to the clear the constrictions in the artery, the resistance to flow surges considerably in the range of 6.75–8.78 when the stenosis position extends in the axial direction from 0.1 to 0.3. It is also recorded that when the catheter guidewire radius is 0.18, the pressure gradient in blood flow is found to vary in the range of 1.21–1.43 when the axial variable z varies from 0.2 to 0.8 and it decreases from 1.36 to 1.32 when the blood clot position displaces from 0.2 to 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

Abbreviations

L:

Length of the artery

R:

Non-stenotic radius of outer tube

K :

Thermal conductivity

T :

Temperature

S :

Stress tensor

Q:

Flow rate

Gr:

Grashof number

We:

Weissenberg number

\(\left( {{\bar{r}},{\bar{z}}} \right) \) :

Cylindrical Coordinates

\(\left( {{\bar{u}},{\bar{w}}} \right) \) :

Radial, Axial velocity

\(n\left( { \ge 2} \right) \) :

Multiple stenosis shape parameter

\(q/\frac{{\partial p}}{{\partial z}}\) :

Pressure gradient

a:

Location of the stenosis

b:

Length of the stenosis

c:

Catheter radius

m:

Power law index

\(\delta \) :

Maximum stenotic depth

g:

Gravity

p:

Fluid’s pressure

\(\Pi \) :

Second invariant of stress tensor

\(\eta \) :

Outer wall of artery

\(\epsilon \) :

Inner wall of artery

\(\beta \) :

Dimensionless heat source or sink parameter

\(\theta \) :

Temperature

\(\zeta \) :

Maximum height attained by the clot

\(\gamma \) :

Thermal expansion coefficient

\(\rho \) :

Density

\(\mu \) :

Viscosity

\(\phi \) :

Nanofluid volume fraction

nf:

Nanofluid

f:

Base fluid

s:

Metallic nanoparticles

d:

Displacement

\({c_p}\) :

Heat capacity

References

  1. Sweed, N., Mekheimer, K.S., EL-Kholy, A., Abdelwahab, A.: Alterations in pulsatile bloodstream with the heat and mass transfer through asymmetric stenosis artery: erythrocytes suspension model. Heat Transf. 50(3), 2259–2287 (2021)

    Google Scholar 

  2. Ponalagusamy, R.: Blood flow through stenosed tube. Ph.D. Dissertation, Ph.D Thesis, IIT, Bombay, India (1986)

  3. Liepsch, D., Singh, M., Lee, M.: Experimental analysis of the influence of stenotic geometry on steady flow. Biorheology 29(4), 419–431 (1992)

    Google Scholar 

  4. Al-Saad, M., Suarez, C., Obeidat, A., Bordas, S., Kulasegaram, S.: Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation. Comput. Model. Eng. Sci. 122(3), 831–862 (2020)

    Google Scholar 

  5. Jackson, S.P.: Arterial thrombosis—insidious, unpredictable and deadly. Nat. Med. 17(11), 1423–1436 (2011)

    Google Scholar 

  6. Elnaqeeb, T., Mekheimer, K.S., Alghamdi, F.: Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis. Math. Biosci. 282, 135–146 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses—I. Steady flow. J. Biomech. 6(4), 395–410 (1973)

    Google Scholar 

  8. MacDonald, D.: On steady flow through modelled vascular stenoses. J. Biomech. 12(1), 13–20 (1979)

    Google Scholar 

  9. Chaturani, P., Samy, R.P.: Pulsatile flow of Casson’s fluid through stenosed arteries with applications to blood flow. Biorheology 23(5), 499–511 (1986)

    Google Scholar 

  10. Afiqah, W.S., Sankar, D.S.: Effects of porosity in four-layered non-linear blood rheology in constricted narrow arteries with clinical applications. Comput. Methods Progr. Biomed. 199, 105907 (2021)

    Google Scholar 

  11. Kumawat, C., Sharma, B.K., Mekheimer, K.S.: Mathematical analysis of two-phase blood flow through a stenosed curved artery with hematocrit and temperature dependent viscosity. Phys. Scr. 96(12), 125277 (2021)

    Google Scholar 

  12. Karino, T., Goldsmith, H.L.: Flow behaviour of blood cells and rigid spheres in an annular vortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 279(967), 413–445 (1977)

    Google Scholar 

  13. Kapur, J.N.: Mathematical Models in Biology and Medicine. East-West Press Pvt. Ltd., New Delhi (1992)

    MATH  Google Scholar 

  14. Mann, K.G., Butenas, S., Brummel, K.: The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 23(1), 17–25 (2003)

    Google Scholar 

  15. Sankar, D.S.: Two-phase non-linear model for blood flow in asymmetric and axisymmetric stenosed arteries. Int. J. Non Linear Mech. 46(1), 296–305 (2011)

    Google Scholar 

  16. Choi, S.U.: Nanofluids: from vision to reality through research. J. Heat Transf. 131(3), 033106 (2009)

    Google Scholar 

  17. Tyler, T., Shenderova, O., Cunningham, G., Walsh, J., Drobnik, J., McGuire, G.: Thermal transport properties of diamond-based nanofluids and nanocomposites. Diam. Relat. Mater. 15(11–12), 2078–2081 (2006)

    Google Scholar 

  18. Das, S.K., Choi, S.U., Patel, H.E.: Heat transfer in nanofluids—a review. Heat Transf. Eng. 27(10), 3–19 (2006)

    Google Scholar 

  19. Liu, M.S., Lin, M.C.C., Huang, I.T., Wang, C.C.: Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transf. 32(9), 1202–1210 (2005)

    Google Scholar 

  20. Nsofor, E.C.: Recent patents on nanofluids (nanoparticles in liquids) heat transfer. Recent Pat. Mech. Eng. 1(3), 190–197 (2008)

    Google Scholar 

  21. Afiqah, W.S., Sankar, D.S.: Two-phase nonlinear rheological analysis of blood flow in small diameter blood vessels with constriction. ARPN J. Eng. Appl. Sci. 15(10), 1129–1143 (2020)

    Google Scholar 

  22. Khan, M.I., Alzahrani, F., Hobiny, A.: Heat transport and nonlinear mixed convective nanomaterial slip flow of Walter-B fluid containing gyrotactic microorganisms. Alex. Eng. J. 59(3), 1761–1769 (2020)

    Google Scholar 

  23. Bugliarello, G., Hayden, J.W.: Detailed characteristics of the flow of blood in vitro. Trans. Soc. Rheol. 7(1), 209–230 (1963)

    Google Scholar 

  24. Bugliarello, G., Sevilla, J.: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7(2), 85–107 (1970)

    Google Scholar 

  25. Cokelet, G.: The rheology of human blood. In: Biomechanics: Its Foundations and Objectives (1972)

  26. Shukla, J., Parihar, R., Rao, B.: Effects of stenosis on non-Newtonian flow of the blood in an artery. Bull. Math. Biol. 42(3), 283–294 (1980)

    MATH  Google Scholar 

  27. Priyadharshini, S., Ponalagusamy, R.: Computational model on pulsatile flow of blood through a tapered arterial stenosis with radially variable viscosity and magnetic field. Sadhana 42(11), 1901–1913 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Yilmaz, F., Gundogdu, M.Y.: A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea Aust. Rheol. J. 20(4), 197–211 (2008)

    Google Scholar 

  29. Zaman, A., Ali, N., B’eg, O.A.: Unsteady magnetohydrodynamic blood flow in a porous-saturated overlap** stenotic artery-numerical modeling. J. Mech. Med. Biol. 16(4), 1650049 (2016)

    Google Scholar 

  30. Haghighi, A.R., Asl, M.S., Kiyasatfar, M.: Mathematical modeling of unsteady blood flow through elastic tapered artery with overlap** stenosis. J. Braz. Soc. Mech. Sci. 37(2), 571–578 (2015)

    Google Scholar 

  31. Barnes, H.A., Hutton, J.F., Walters, K.: An Introduction to Rheology, vol. 3. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  32. Zaman, A., Ali, N., Sajid, M., Hayat, T.: Effects of unsteadiness and nonnewtonian rheology on blood flow through a tapered time-variant stenotic artery. AIP Adv. 5(3), 037129 (2015)

    Google Scholar 

  33. Nadeem, S., Ijaz, S., Akbar, N.S.: Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis. Int. Nano Lett. 3(1), 1–13 (2013)

    Google Scholar 

  34. Ellahi, R., Rahman, S., Nadeem, S., Akbar, N.S.: Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl. Nanosci. 4(8), 919–926 (2014)

    Google Scholar 

  35. Ahmed, A., Nadeem, S.: The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries. J. Mol. Liq. 216, 615–623 (2016)

    Google Scholar 

  36. Mekheimer, K.S., Elnaqeeb, T., El Kot, M., Alghamdi, F.: Simultaneous effect of magnetic field and metallic nanoparticles on a micropolar fluid through an overlap** stenotic artery: blood flow model. Phys. Essays 29(2), 272–283 (2016)

    Google Scholar 

  37. Mekheimer, K.S., Mohamed, M.S., Elnaqeeb, T.: Metallic nanoparticles influence on blood flow through a stenotic artery. Int. J. Pure. Appl. Math. 107(1), 201 (2016)

    Google Scholar 

  38. Nadeem, S., Ijaz, S.: Influence of metallic nanoparticles on blood flow through arteries having both stenosis and aneurysm. IEEE Trans. Nanobiosci. 14(6), 668–679 (2015)

    Google Scholar 

  39. Akbar, N.S.: Metallic nanoparticles analysis for the blood flow in tapered stenosed arteries: application in nanomedicines. Int. J. Biomath. 9(1), 1650002 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Nadeem, S., Ijaz, S.: Study of radially varying magnetic field on blood flow through catheterized tapered elastic artery with overlap** stenosis. Commun. Theor. Phys. 64(5), 537 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Zidan, A., McCash, L., Akhtar, S., Saleem, A., Issakhov, A., Nadeem, S.: Entropy generation for the blood flow in an artery with multiple stenosis having a catheter. Alex. Eng. J. 60(6), 5741–5748 (2021)

    Google Scholar 

  42. Ramadan, S.F., Mekheimer, Kh.S., Bhatti, M.M., Moawad, A.M.A.: Phan-Thien-Tanner nanofluid flow with gold nanoparticles through a stenotic electrokinetic aorta: a study on the cancer treatment. Heat Transf. Res. 52(16), 87–99 (2021)

    Google Scholar 

  43. Elogail, M.A., Mekheimer, Kh.S.: Modulated viscosity-dependent parameters for MHD blood flow in microvessels containing oxytactic microorganisms and nanoparticles. Symmetry 12(12), 2114 (2020)

    Google Scholar 

  44. Zhang, L., Bhatti, M.M., Marin, M., Mekheimer, Kh.S.: Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles. Entropy 22(10), 1070 (2020)

    Google Scholar 

  45. Abdelsalam, S.I., Mekheimer, Kh.S., Zaher, A.Z.: Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment. Chin. J. Phys. 67, 314–329 (2020)

    MathSciNet  Google Scholar 

  46. Ramadan, S.F., Mekheimer, K.S.: New insight into gyrotactic microorganisms in anti-infection agents through wavy deformable catheter/endoscope with non-linear thermal radiation: numerical study. J. Adv. Res. Fluid Mech. Therm. Sci. 75(3), 25–42 (2020)

    Google Scholar 

  47. Ijaz, S., Nadeem, S.: Transportation of nanoparticles investigation as a drug agent to attenuate the atherosclerotic lesion under the wall properties impact. Chaos Solitons Fractals 112, 52–65 (2018)

    MathSciNet  Google Scholar 

  48. Nadeem, S., Fuzhang, W., Alharbi, F.M., Sajid, F., Abbas, N., El-Shafay, A.S., Al-Mubaddel, F.S.: Numerical computations for Buongiorno nano fluid model on the boundary layer flow of viscoelastic fluid towards a nonlinear stretching sheet. Alex. Eng. J. 61(2), 1769–1778 (2022)

    Google Scholar 

  49. Ahmad, S., Khan, M.N., Nadeem, S.: Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction. Int. J. Ambient. (2022). https://doi.org/10.1080/01430750.2022.2029765

    Article  Google Scholar 

  50. Muhammad, N., Nadeem, S., Khan, U., Sherif, E.-S.M., Issakhov, A.: Insight into the significance of Richardson number on two-phase flow of ethylene glycol-silver nanofluid due to Cattaneo–Christov heat flux. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.2011470

    Article  Google Scholar 

  51. Nadeem, S., Haq, R.U., Khan, Z.H.: Heat transfer analysis of waterbased nanofluid over an exponentially stretching sheet. Alex. Eng. J. 53(1), 219–224 (2014)

    Google Scholar 

  52. Nadeem, S., Ijaz, S.: Theoretical analysis of metallic nanoparticles on blood flow through stenosed artery with permeable walls. Phys. Lett. A 379(6), 542–554 (2015)

    MATH  Google Scholar 

  53. Sheikholeslami, M., Ganji, D.D., Javed, M.Y., Ellahi, R.: Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magn. Magn. Mater. 374, 36–43 (2015)

    Google Scholar 

  54. Back, L.: Estimated mean flow resistance increase during coronary artery catheterization. J. Biomech. 27(2), 169–175 (1994)

    Google Scholar 

  55. Sankar, D.S.: A two-fluid model for pulsatile flow in catheterized blood vessels. Int. J. Non Linear Mech. 44(4), 337–351 (2009)

    MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AWS perceived the research problem, formulated it as mathematical model and contributed in obtaining the analytical solutions and also take part in develo** MATLAB code for generating data for plotting the graphs and then analyzing the results. DSS contributed in obtaining the expressions for rheological quantities and involved in generating the data for plotting the graphs through MATLAB programming and analysed and validated the results. AKN analysed and validated the results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. S. Sankar.

Ethics declarations

Code availability

Not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajihah, S.A., Sankar, D.S. & Nagar, A.K. Effects of Catheter, Stenosis and Thrombosis in Non-Newtonian Blood Flow Through Narrow Arteries with Clinical Applications: A Mathematical Model. Int. J. Appl. Comput. Math 8, 136 (2022). https://doi.org/10.1007/s40819-022-01335-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01335-z

Keywords

Navigation