Log in

Numerical modeling of the hydraulic jump location using 2D Iber software

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

In the recent years, numerical modeling of free surface flows has experienced a rapid and important development. Several programs and software have been used to simulate free surface flows. Transition from supercritical to subcritical flow regime leads to formation of hydraulic jumps. Numerical modeling of hydraulic jumps has taken an important part in this domain. This work aims to assess the efficiency of Iber software in the simulation of hydraulic jump in a rectangular channel. The location and displacement of the hydraulic jump were simulated by 2D Iber software. The data of these simulations were obtained from the experimental tests carried out at the laboratory. The results of the simulated hydraulic jump surface profiles showed a good agreement with those measured experimentally. The velocity distribution is presented in this study. Numerical simulation results satisfactorily predicted the hydraulic jump location, which gives confidence using of Iber software in the simulation of hydraulic jump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Achour B, Sedira N, Debabeche M (2002) Ressaut contrôlé par seuil dans un canal rectangulaire. Larhyss J 1:73–85

    Google Scholar 

  • Arjenaki MO, Sanayei HRZ (2020) Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach. Model Earth Syst Environ 6:605–616. https://doi.org/10.1007/s40808-020-00714-z

    Article  Google Scholar 

  • Azimi H, Shabanlou S, Kardar S (2017) Characteristics of hydraulic jump in U-shaped channels. Arab J Sci Engi 42(9):3751–3760. https://doi.org/10.1007/s13369-017-2503-5

    Article  Google Scholar 

  • Behrouzi-Rad R, Fathi-Moghadam M, Ghafouri HR, Alikhani A (2013) Generation of hydraulic jump with sill. Wulfenia J Klagenf 20(2):300–309

    Google Scholar 

  • Bladé E, Cea L, Corestein G, Escolano E, Puertas J, Vázquez-Cendón E, Dolz J, Coll A (2014) Iber: herramienta de simulación numérica del flujo en ríos. Rev Int Métodos Numér Cálculo Diseño Ing 30(1):1–10

    Article  Google Scholar 

  • Carvalho RF, Lemos CM, Ramos CM (2008) Numerical computation of the flow in hydraulic jump stilling basins. J Hydraul Res 46(6):739–752

    Article  Google Scholar 

  • Cea L, Bermúdez Pita M, Sobral Areán B (2018) Cálculo de curvas de remanso y fenómenos locales con Iber. Universidade da Coruña. https://doi.org/10.17979/spudc.9788497496834

  • Cea L, Bladé E, Sanz M, Bermúdez M, Bermúdez M, Mateos Á (2019) Iber applications basic guide. In: Two-dimensional modelling of free surface shallow water flows. Universidade da Coruña. https://doi.org/10.17979/spudc.9788497497176

  • Corestein G, Bladé E, Cea L, Lara Á, Escolano E, Coll A (2010) Iber, a river dynamics simulation tool. In: Proceedings of GiD conference: GiD 2010, CIMNE

  • Cueva PMH, Cañón BJE, Cea L (2018) El modelo iber como herramienta docente de ayuda al aprendizaje y análisis de fenómenos de flujo bidimensionales. In : XXV Congreso Nacional de Hidráulica

  • Daneshfaraz R, Sadeghfam S, Ghahramanzadeh A (2017) Three-dimensional numerical investigation of flow through screens as energy dissipaters. Can J Civ Eng 44(10):850–859

    Article  Google Scholar 

  • De Leo A, Ruffini A, Postacchini M, Colombini M, Stocchino A (2020) The effects of hydraulic jumps instability on a natural river Confluence: the case study of the Chiaravagna River (Italy). Water 12(7):2027

    Article  Google Scholar 

  • De Padova D, Mossa M, Sibilla S, Torti E (2013) 3D SPH modelling of hydraulic jump in a very large channel. J Hydraul Res 51(2):158–173

    Article  Google Scholar 

  • De Padova D, Mossa M, Sibilla S (2018) SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop. J Hydrodyn 30:106–113. https://doi.org/10.1007/s42241-018-0011-z

    Article  Google Scholar 

  • Debabeche M, Cherhabil S, Hafnaoui A, Achour B (2009) Hydraulic jump in a sloped triangular channel. Can J Civ Eng 36(4):655–658

    Article  Google Scholar 

  • Gharangik AM, Chaudhry MH (1991) Numerical simulation of hydraulic jump. J Hydraul Eng 117(9):1195–1211

    Article  Google Scholar 

  • Hachemi A, Benkhaled A (2016) Flood-Duration-frequency Modeling Application To Wadi Abiodh, Biskra (algeria). Larhyss J 27:277–297

    Google Scholar 

  • Hafnaoui MA (2018) Modélisation numérique du ressaut hydraulique dans quelques types de canaux prismatiques. Doctoral dissertation, Universite Mohamed Khider Biskra

  • Hafnaoui MA, Bensaid M, Fekraoui F, Hachemi A, Noui A, Djabri L (2009) Impacts des facteurs climatiques et morphologiques sur les inondations de Doucen. J Alger Rég Arid 8:81–95

    Google Scholar 

  • Hafnaoui MA, Hachemi A, Ben Saïd M, Noui A, Fekraoui F, Madi M, Mghezzi A, Djabri L (2013) Vulnérabilité aux inondations dans les régions sahariennes - cas de Doucen. J Alger Rég Arid N°12:148–155

    Google Scholar 

  • Hafnaoui MA, Carvalho RF, Debabeche M (2016) Prediction of Hydraulic Jump location in Some Types of Prismatic Channels using Numerical Modelling. In: 6th International Junior Researcher and Engineer Workshop on Hydraulic Structures (IJREWHS 2016) Lübeck, Germany. https://doi.org/10.15142/T3D01F

  • Hafnaoui MA, Debabeche M, Carvalho RF (2018) Modélisation numérique de l’impact des paramètres hydrauliques et numériques sur la localisation du ressaut hydraulique. Courrier du Savoir 25:61–70

    Google Scholar 

  • Hafnaoui MA, Madi M, Hachemi A, Farhi Y (2020) El Bayadh city against flash floods: case study. Urban Water J 17(5):390–395. https://doi.org/10.1080/1573062X.2020.1714671

    Article  Google Scholar 

  • Iber 2.5.1 (2019). https://www.iberaula.es/54/iber-model/downloads. Accessed 25 Sept 2019

  • Kumar N, Lal D, Sherring A, Issac RK (2017) Applicability of HEC-RAS & GFMS tool for 1D water surface elevation/flood modeling of the river: a Case Study of River Yamuna at Allahabad (Sangam), India. Model Earth Syst Environ 3(4):1463–1475

    Article  Google Scholar 

  • Manual de referencia hidráulico IBER Modelización bidimensional del flujo en lámina libre en aguas poco profundas (2014) https://www.iberaula.es/Spaces/CtrAcceso?curPage=https://www.iberaula.es/Temas/BajaTemaFich?id_tema=968. Accessed 25 Sept 2019

  • Muñoz G, Kenyo C (2014) Comparación de los modelos Hidráulicos Unidimensional (HEC-RAS) y Bidimensional (IBER) en el Análisis de Rotura en Presas de Materiales Sueltos; y Aplicación a la Presa Palo Redondo. Universidad Privada Antenor Orrego

  • Ortiz JCR, Pérez M, Delfín G, Freitez C, Martínez F (2017) Análisis comparativo entre los modelos HEC-RAS e IBER en la evaluación hidráulica de puentes. Gaceta Técnica 17(1):9–28

    Google Scholar 

  • Rahman M, Chaudry MH (1995) Simulation of hydraulic jump with grid adaptation. J Hydraul Res 33(4):555–569

    Article  Google Scholar 

  • Roohi M, Soleymani K, Salimi M, Heidari M (2020) Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint-Venant equation. Model Earth Syst Environ 6:645–658. https://doi.org/10.1007/s40808-020-00718-9

    Article  Google Scholar 

  • Sakarya ABA, Tokyay ND (2000) Numerical simulation of A-type hydraulic jumps at positive steps. Can J Civ Eng 27(4):805–813

    Article  Google Scholar 

  • Tokyay ND, Altan-Sakarya AB, Eski E (2008) Numerical simulation of minimum B-jumps at abrupt drops. Int J Numer Meth Fluids 56(9):1605–1623

    Article  Google Scholar 

Download references

Funding

The research was supported by the Directorate General for Scientific Research and Technological Development (DGRSDT), Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Amin Hafnaoui.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafnaoui, M.A., Debabeche, M. Numerical modeling of the hydraulic jump location using 2D Iber software. Model. Earth Syst. Environ. 7, 1939–1946 (2021). https://doi.org/10.1007/s40808-020-00942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-020-00942-3

Keywords

Navigation