Log in

A study of the morphometric analysis and cycle of erosion in Waingangā Basin, India

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The stages of landscape brought by Wainganga river cycle of erosion are precisely characterized and determined by progressive returns of maximum relief ratio (above 70%), maximum amount of slope (40–100%), high dissection index (above 30%) high hypsometric integral (above 60%), high percentage of unconsumed upland (above 30%), and low circularity index. A total number of streams are 9472 in which 6502 are first-order, 2190 are second-order, 605 are third-order, 153 are fourth-order, 17 are fifth-order, and 4 are sixth-order streams. Bifurcation values range from 2.97 to 9.00 and the average bifurcation value is 3.97. The elongation ratios are 0.12. The values reveal that the basin is strongly elongated and it is composed of highly permeable homogenous geologic materials. The drainage density of the river basin is 0.66. With the advancement of the cyclic landscape, the trend of hypsometric integrals, relief ratio, amount of slope, dissection index, and percentage of unconsumed upland trends to decrease to a minimum, while circularity index increases. The penultimate stage of the landscape finally achieves maximum circularity with minimum returns of other variables progressively. The study recommends that the river basin needs a hydrogeological and geophysical study in the future for proper water management and choice of artificial recharge structures for recharge of groundwater in the area under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ali K, Bajracharya RM, Sitaula BK, Raut N, Koirala HL (2017) Morphometric analysis of Gilgit river basin in mountainous region of Gilgit-Baltistan Province, Northern Pakistan. J Geosci Environ Prot 5:70–88

    Google Scholar 

  • Biswas S, Sudhakar S, Desai VR (1999) Prioritization of subwatersheds based on morphometric analysis of drainage basin—a remote sensing and GIS approach. J Indian Soc Remote Sens 27:155–156. https://doi.org/10.1007/BF02991569

    Article  Google Scholar 

  • Chow Ven T (ed) (1964) Handbook of applied hydrology. McGraw Hill Inc., New York

    Google Scholar 

  • Das AK, Mukherjee S (2005) Drainage morphometry using satellite data and GIS in Raigad district Maharashtra. J Geol Soc India 65:577–586

    Google Scholar 

  • Dodov B, Foufoula, Georgiou E (2006) Floodplain morphometry extraction from a high resolution digital elevation model: a simple algorithm for regional analysis studies. IEEE Geosci Remote Sens Lett 3:410–413. https://doi.org/10.1109/lgrs.2006.874161

    Article  Google Scholar 

  • Durbuda DG, Purandara BK, Sharma A (2001) Estimation surface run-off potential of a watershed in semi-arid environment - a case study. J Ind Soc Remote Sens 29(1&2):47–58

    Article  Google Scholar 

  • Engelhardt BM, Weisberg PJ, Chambers JC (2012) Influences of watershed geomorphology on extent and composition of riparian vegetation. J Veg Sci 23(1):127–139. https://doi.org/10.1111/j.1654-1103.2011.01328.x

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2014) An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility map**. Int J Geog Inf Sci. https://doi.org/10.1080/13658816.2013.869821

    Article  Google Scholar 

  • Feizizadeh B, Roodposhti MS, Jankowski P, Blaschke T (2014) A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility map**. Comput Geosci 73:208–221

    Article  Google Scholar 

  • Forzieri G, Gardenti M, Caparrini F, Hashim M (2008) A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: a case study in the region of Kidal, Mali. Phys Chem Earth Parts A/B/C 33:74–85. https://doi.org/10.1016/j.pce.2007.04.014

    Article  Google Scholar 

  • Gaikwad RD, Bhagat VS (2017) Multi-criteria watershed prioritization of Kas Basin in Maharashtra (India): AHP and influence approaches. Hydrosp Anal 1(1):41–61

    Article  Google Scholar 

  • Gaikwad R, Bhagat V (2018) Multi-criteria prioritization for sub-watersheds in medium river basin using AHP and influence approaches. Hydrosp Anal Gatha Cognit. https://doi.org/10.21523/gcj3.18020105

    Article  Google Scholar 

  • Gashaw T, Tulu T, Argawal M (2017) Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environ Syst Res 6(1):1–16. https://doi.org/10.1186/s40068-016-0078-x

    Article  Google Scholar 

  • Hadley RF, Schumm SA (1961) Sediment sources and drainage basin characteristics in upper Cheyenne River basin. US Geological Survey Water-Supply Paper 1531, 198

  • Horton RE (1932) Drainage basin characteristics. Trans Am Geophys U 14:350–361. https://doi.org/10.1029/TR013i001p00350

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydro-physical approach to quantitative morphology. Bull Geol Soc Am 56:275–370. https://doi.org/10.1130/0016-7606(1945)56%5b275:EDOSAT%5d2.0.CO;2

    Article  Google Scholar 

  • Howard A (1990) Role of hypsometry and planform in basin hydrologic response. Hydrol Process 4:373–385. https://doi.org/10.1002/hyp.3360040407

    Article  Google Scholar 

  • Kale Vishwas S (1990) Morphological and hydrological characteristics of some allochthonous river channels, Western Deccan trap upland region, India. Geomorphology 3(1):31–43. https://doi.org/10.1016/0169-555X(90)90030-T

    Article  Google Scholar 

  • Kale Vishwas S (2002) Fluvial geomorphology of Indian rivers—an overview progress. Phys Geogr 26(3):400–433. https://doi.org/10.1191/0309133302pp343ra

    Article  Google Scholar 

  • Kaliraj S, Chandrasekar N, Magesh NS (2015) Morphometric analysis of the River Thamirabarani sub-basin in Kanyakumari District, South west coast of Tamil Nadu, India, using remote sensing and GIS. Environ Earth Sci

  • Kudnar NS (2015a) Linear aspects of the Wainganga river basin morphometry using geographical information system. Monthly Multidiscip Online Res J Rev Res 1–9

  • Kudnar NS (2015b) Morphometric analysis of the Wainganga river basin using traditional & GIS techniques, Ph.D. Thesis R.T.M. University, Nagpur, pp 40–90

  • Kudnar NS (2018) Water pollution a major issue in urban areas: a case study of the Wainganga river basin. Vidyawarta Int Multidiscipl Res J, pp 78–84

  • Kumar A (1999) Sustainable utilization of water resources in watershed perspective Acase study in Alaunja watershed, Hazaribagh. Bihar J Indian Society Remote Sensing 27(1):13–22. https://doi.org/10.1007/BF02990771

    Article  Google Scholar 

  • Kumar A, Jayappa K, Deepika B (2011) Prioritization of sub-basins based on geomorphology and morphometric analysis using remote sensing and geographic information system (GIS) techniques. Geocarto Int 26:569–592

    Article  Google Scholar 

  • Magesh N, Jitheshlal K, Chandrasekar N, **i K (2013) Geographical information system based morphometric analysis of Bharathapuzha river basin, Kerala, India. Appl Water Sci 3:467–477. https://doi.org/10.1007/s13201-013-0095-0

    Article  Google Scholar 

  • Mark DM (1983) Relation between field-surveyed channel network and map-based geomorphometric measures, Inez Kentucky. Ann Assoc Am Geogr 73(3):358–372

    Article  Google Scholar 

  • Mesa LM (2006) Morphometric analysis of a subtropical Andean basin (Tucumán, Argentina). Environ Geol 50:1235–1242. https://doi.org/10.1007/s00254-006-0297-y

    Article  Google Scholar 

  • Miller VC (1953) A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain Area, Virginia and Tennessee. Project NR 389042, Tech Rept, Columbia University, Department of Geology, ONR Geography Branch, New York

  • Moore I, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30. https://doi.org/10.1002/hyp.3360050103

    Article  Google Scholar 

  • Mueller JE (1968) An introduction to the hydraulic and topographic sinuosity indexes. Ann Assoc Am Geogr 58:371–385

    Article  Google Scholar 

  • Nag SK, Chakraborty S (2003) Influence of rock types and structures in the development of drainage network in hard rock area. Indian Soc Remote Sens 31(1):25–35. https://doi.org/10.1007/BF03030749

    Article  Google Scholar 

  • Oguchi T (1997) Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Proc Land J Br Geomorphol Group 22(2):107–120

    Article  Google Scholar 

  • Othman A, Gloaguen R (2014) Improving lithological map** by SVM classification of spectral and morphological features: the discovery of a new chromite body in the Mawat Ophiolite Complex (Kurdistan, NE Iraq). Remote Sens 6:6867–6896. https://doi.org/10.3390/rs6086867

    Article  Google Scholar 

  • Ozdemir H, Bird D (2009) Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ Geol 56(7):1405–1415

    Article  Google Scholar 

  • Panda B, Venkatesh M, Bijendrakumar Anshumali (2019) A GIS-based approach in drainage and morphometric analysis of ken river basin and sub-basins, Central India. J Geol Soc India 93:75–84

    Article  Google Scholar 

  • Parveen R, Kumar U, Kumar Singh V (2012) Geomorphometric characterization of upper south Koel basin, Jharkhand: a remote sensing & GIS approach. J Water Resour Prot

  • Ratnam K, Srivastava Y, Rao V, Amminedu E, Murthy K (2005) Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis remote sensing and GIS perspective. J Indian Soc Remote Sens 33:25–38. https://doi.org/10.1007/BF02989988

    Article  Google Scholar 

  • Ray R, Sheth HC, Mallik J (2006) Structure and emplacement of the Nandurbar- Dhule mafic dyke swarm, Deccan Traps, and the tectonomagmatic evolution of flood basalts. Bull Volcanol 69:537. https://doi.org/10.1007/s00445-006-0089-y

    Article  Google Scholar 

  • Sahu N, Obi Reddy GP, Nirmal K, Nagaraju MSS, Srivastava R and Singh SK (2016) Morphometric analysis in basaltic Terrain of Central India using GIS techniques: a case study. Appl Water Sci

  • Schmidt J, Almond PC, Basher L (2005) Modeling loess landscape for the south Island, New Zealand, based on expert knowledge, New Zealand. J Geology Geophys 48:133–177

    Article  Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646. https://doi.org/10.1130/0016-7606(1956)67%5b597:EODSAS%5d2.0.CO;2

    Article  Google Scholar 

  • Schumm SA (1963) Sinuosity of alluvial rivers in the great plains. Bull Geol Soc Am 74:1089–1100

    Article  Google Scholar 

  • Silva R (2007) Evaluation of soil loss in guaraíra basin by GIS and remote sensing based model. J Urban Environ Eng 1(2):44–52. https://doi.org/10.4090/juee.2007.v1n2.044052

    Article  Google Scholar 

  • Singh KN (1980) Quantitative analysis of landforms and settlement distribution in southern uplands of eastern Uttar Pradesh (India). VimalPrakashan, Varanasi, pp 23–73

    Google Scholar 

  • Singh S, Kanhaiya S (2015) Morphometry of the Barakar River Basin, India: a remote sensing and GIS approach. Int J Curr Res 7(7):17948–17955

    Google Scholar 

  • Singh P, Thakur J, Singh UC (2013) Morphometric analysis of Morar river basin, Madhya Pradesh, India, using remote sensing and GIS techniques. Environ Earth Science 68:1967–1977. https://doi.org/10.1007/s12665-012-1884-8

    Article  Google Scholar 

  • Slaucitajs L (1936) Bagriff der Reliefentwicklung and Berechung der Whren Areals eincr topographischen glacke. Retern Litt 83:111–112

    Google Scholar 

  • Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668

    Article  Google Scholar 

  • Smith B, Sandwell D (2003) Accuracy and resolution of shuttle radar topography mission data. Geophys Res Lett 30(9):20–21. https://doi.org/10.1029/2002GL016643

    Article  Google Scholar 

  • Sreedevi PD, Owais S, Khan HH, Ahmed S (2009) Morphometric analysis of a watershed of South India using SRTM data and GIS. J Geol Soc India 73(4):543–552. https://doi.org/10.1007/s12594-009-0038-4

    Article  Google Scholar 

  • Srinivasa VS, Govindainah S, Home Gowda H (2004) Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district South India using remote sensing and GIS techniques. J Indian Soc Remote Sens 32(4):351–362. https://doi.org/10.1007/BF03030860

    Article  Google Scholar 

  • Srivastava VK (1997) Study of drainage pattern of Jharia Coalfield (Bihar), India, through remote sensing technology. J. Indian Soc. Remote Sensing 25(1):41–46. https://doi.org/10.1007/BF02995417

    Article  Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63(1):1117–1142

    Article  Google Scholar 

  • Strahler AN (1953) Revisions of Horton’s quantitative factors in erosional terrain. Trans Am Geophys Union 34:345

    Google Scholar 

  • Straher AN (1957) Quantitative analysis of watershed geometry. Trans Am Geophys Union 38:913–920. https://doi.org/10.1029/TR038i006p00913

    Article  Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basins and channel networks. In: ByVenTe Chow (ed) Handbook of applied hydrology. McGraw Hill Book Company, New York, pp 62–68. https://doi.org/10.1080/00288306.2005.9515103

    Chapter  Google Scholar 

  • Strecker MR, Alonso RN, Bookhagen B (2007) Tectonics and climate of the Southern Central Andes. Ann Rev Earth Planet Sci 35:747–787. https://doi.org/10.1146/annurev.earth.35.031306.140158

    Article  Google Scholar 

  • Sujatha ER, Selvakumary R, Rajasimmanz UAB, Victorx RG (2015) Morphometric analysis of sub-Watershed in parts of Western Ghats, South India using ASTER DEM. Geomatics Nat Haz Risk 6:326–341. https://doi.org/10.1080/19475705.2013.845114

    Article  Google Scholar 

  • Warren R (2010) An experimental test of well-described vegetation patterns across slope aspects using woodland herb transplants and manipulated abiotic drivers. New Phytol 185:1038–1049. https://doi.org/10.1111/j.1469-8137.2009.03147.x

    Article  Google Scholar 

  • Zolekar RB, Bhagat VS (2015) Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Comput Electron Agric 118:300–321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rajasekhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudnar, N.S., Rajasekhar, M. A study of the morphometric analysis and cycle of erosion in Waingangā Basin, India. Model. Earth Syst. Environ. 6, 311–327 (2020). https://doi.org/10.1007/s40808-019-00680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-019-00680-1

Keywords

Navigation